MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltsep Structured version   Visualization version   GIF version

Theorem ssltsep 27035
Description: The separation property of surreal set less-than. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
ssltsep (𝐴 <<s 𝐵 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem ssltsep
StepHypRef Expression
1 brsslt 27030 . 2 (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
2 simpr3 1196 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)) → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
31, 2sylbi 216 1 (𝐴 <<s 𝐵 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087  wcel 2106  wral 3062  Vcvv 3442  wss 3901   class class class wbr 5096   No csur 26893   <s cslt 26894   <<s csslt 27025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pr 5376
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-sn 4578  df-pr 4580  df-op 4584  df-br 5097  df-opab 5159  df-xp 5630  df-sslt 27026
This theorem is referenced by:  ssltsepc  27037  sssslt1  27039  sssslt2  27040  conway  27043  etasslt  27057  slerec  27063  bday1s  27075  madebdaylemlrcut  34187
  Copyright terms: Public domain W3C validator