MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltsep Structured version   Visualization version   GIF version

Theorem ssltsep 27731
Description: The separation property of surreal set less-than. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
ssltsep (𝐴 <<s 𝐵 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem ssltsep
StepHypRef Expression
1 brsslt 27726 . 2 (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
2 simpr3 1197 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)) → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
31, 2sylbi 217 1 (𝐴 <<s 𝐵 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2111  wral 3047  Vcvv 3436  wss 3902   class class class wbr 5091   No csur 27579   <s cslt 27580   <<s csslt 27721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-sslt 27722
This theorem is referenced by:  ssltsepc  27735  sssslt1  27737  sssslt2  27738  conway  27741  etasslt  27755  slerec  27761  eqscut3  27766  bday1s  27776  cuteq1  27779  madebdaylemlrcut  27845  onscutlt  28202  onsiso  28206  bdayn0p1  28295
  Copyright terms: Public domain W3C validator