MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltsep Structured version   Visualization version   GIF version

Theorem ssltsep 27702
Description: The separation property of surreal set less-than. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
ssltsep (𝐴 <<s 𝐵 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem ssltsep
StepHypRef Expression
1 brsslt 27697 . 2 (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
2 simpr3 1197 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)) → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
31, 2sylbi 217 1 (𝐴 <<s 𝐵 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wral 3044  Vcvv 3447  wss 3914   class class class wbr 5107   No csur 27551   <s cslt 27552   <<s csslt 27692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-sslt 27693
This theorem is referenced by:  ssltsepc  27705  sssslt1  27707  sssslt2  27708  conway  27711  etasslt  27725  slerec  27731  bday1s  27743  cuteq1  27746  madebdaylemlrcut  27810  onscutlt  28165  onsiso  28169  bdayn0p1  28258
  Copyright terms: Public domain W3C validator