Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssltun2 Structured version   Visualization version   GIF version

Theorem ssltun2 33930
Description: Union law for surreal set less than. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
ssltun2 ((𝐴 <<s 𝐵𝐴 <<s 𝐶) → 𝐴 <<s (𝐵𝐶))

Proof of Theorem ssltun2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 33908 . . 3 (𝐴 <<s 𝐵𝐴 ∈ V)
21adantr 480 . 2 ((𝐴 <<s 𝐵𝐴 <<s 𝐶) → 𝐴 ∈ V)
3 ssltex2 33909 . . . 4 (𝐴 <<s 𝐵𝐵 ∈ V)
43adantr 480 . . 3 ((𝐴 <<s 𝐵𝐴 <<s 𝐶) → 𝐵 ∈ V)
5 ssltex2 33909 . . . 4 (𝐴 <<s 𝐶𝐶 ∈ V)
65adantl 481 . . 3 ((𝐴 <<s 𝐵𝐴 <<s 𝐶) → 𝐶 ∈ V)
74, 6unexd 7582 . 2 ((𝐴 <<s 𝐵𝐴 <<s 𝐶) → (𝐵𝐶) ∈ V)
8 ssltss1 33910 . . 3 (𝐴 <<s 𝐵𝐴 No )
98adantr 480 . 2 ((𝐴 <<s 𝐵𝐴 <<s 𝐶) → 𝐴 No )
10 ssltss2 33911 . . . 4 (𝐴 <<s 𝐵𝐵 No )
1110adantr 480 . . 3 ((𝐴 <<s 𝐵𝐴 <<s 𝐶) → 𝐵 No )
12 ssltss2 33911 . . . 4 (𝐴 <<s 𝐶𝐶 No )
1312adantl 481 . . 3 ((𝐴 <<s 𝐵𝐴 <<s 𝐶) → 𝐶 No )
1411, 13unssd 4116 . 2 ((𝐴 <<s 𝐵𝐴 <<s 𝐶) → (𝐵𝐶) ⊆ No )
15 elun 4079 . . . 4 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦𝐶))
16 ssltsepc 33914 . . . . . . . 8 ((𝐴 <<s 𝐵𝑥𝐴𝑦𝐵) → 𝑥 <s 𝑦)
17163exp 1117 . . . . . . 7 (𝐴 <<s 𝐵 → (𝑥𝐴 → (𝑦𝐵𝑥 <s 𝑦)))
1817adantr 480 . . . . . 6 ((𝐴 <<s 𝐵𝐴 <<s 𝐶) → (𝑥𝐴 → (𝑦𝐵𝑥 <s 𝑦)))
1918com3r 87 . . . . 5 (𝑦𝐵 → ((𝐴 <<s 𝐵𝐴 <<s 𝐶) → (𝑥𝐴𝑥 <s 𝑦)))
20 ssltsepc 33914 . . . . . . . 8 ((𝐴 <<s 𝐶𝑥𝐴𝑦𝐶) → 𝑥 <s 𝑦)
21203exp 1117 . . . . . . 7 (𝐴 <<s 𝐶 → (𝑥𝐴 → (𝑦𝐶𝑥 <s 𝑦)))
2221adantl 481 . . . . . 6 ((𝐴 <<s 𝐵𝐴 <<s 𝐶) → (𝑥𝐴 → (𝑦𝐶𝑥 <s 𝑦)))
2322com3r 87 . . . . 5 (𝑦𝐶 → ((𝐴 <<s 𝐵𝐴 <<s 𝐶) → (𝑥𝐴𝑥 <s 𝑦)))
2419, 23jaoi 853 . . . 4 ((𝑦𝐵𝑦𝐶) → ((𝐴 <<s 𝐵𝐴 <<s 𝐶) → (𝑥𝐴𝑥 <s 𝑦)))
2515, 24sylbi 216 . . 3 (𝑦 ∈ (𝐵𝐶) → ((𝐴 <<s 𝐵𝐴 <<s 𝐶) → (𝑥𝐴𝑥 <s 𝑦)))
26253imp231 1111 . 2 (((𝐴 <<s 𝐵𝐴 <<s 𝐶) ∧ 𝑥𝐴𝑦 ∈ (𝐵𝐶)) → 𝑥 <s 𝑦)
272, 7, 9, 14, 26ssltd 33913 1 ((𝐴 <<s 𝐵𝐴 <<s 𝐶) → 𝐴 <<s (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  wcel 2108  Vcvv 3422  cun 3881  wss 3883   class class class wbr 5070   No csur 33770   <s cslt 33771   <<s csslt 33902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-sslt 33903
This theorem is referenced by:  scutun12  33931
  Copyright terms: Public domain W3C validator