| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | bdayelon 27822 | . . . . . . . . . 10
⊢ ( bday ‘(𝐴 |s 𝐵)) ∈ On | 
| 2 | 1 | onssneli 6499 | . . . . . . . . 9
⊢ (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday
‘𝑥) →
¬ ( bday ‘𝑥) ∈ ( bday
‘(𝐴 |s 𝐵))) | 
| 3 |  | leftssold 27918 | . . . . . . . . . . . . 13
⊢ ( L
‘𝑋) ⊆ ( O
‘( bday ‘𝑋)) | 
| 4 | 3 | a1i 11 | . . . . . . . . . . . 12
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → ( L ‘𝑋) ⊆ ( O ‘(
bday ‘𝑋))) | 
| 5 | 4 | sselda 3982 | . . . . . . . . . . 11
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → 𝑥 ∈ ( O ‘(
bday ‘𝑋))) | 
| 6 |  | bdayelon 27822 | . . . . . . . . . . . 12
⊢ ( bday ‘𝑋) ∈ On | 
| 7 |  | leftssno 27920 | . . . . . . . . . . . . . 14
⊢ ( L
‘𝑋) ⊆  No | 
| 8 | 7 | a1i 11 | . . . . . . . . . . . . 13
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → ( L ‘𝑋) ⊆  No
) | 
| 9 | 8 | sselda 3982 | . . . . . . . . . . . 12
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → 𝑥 ∈  No
) | 
| 10 |  | oldbday 27940 | . . . . . . . . . . . 12
⊢ ((( bday ‘𝑋) ∈ On ∧ 𝑥 ∈  No )
→ (𝑥 ∈ ( O
‘( bday ‘𝑋)) ↔ ( bday
‘𝑥) ∈
( bday ‘𝑋))) | 
| 11 | 6, 9, 10 | sylancr 587 | . . . . . . . . . . 11
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → (𝑥 ∈ ( O ‘(
bday ‘𝑋))
↔ ( bday ‘𝑥) ∈ ( bday
‘𝑋))) | 
| 12 | 5, 11 | mpbid 232 | . . . . . . . . . 10
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → ( bday
‘𝑥) ∈
( bday ‘𝑋)) | 
| 13 |  | simplr 768 | . . . . . . . . . . 11
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → 𝑋 = (𝐴 |s 𝐵)) | 
| 14 | 13 | fveq2d 6909 | . . . . . . . . . 10
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → ( bday
‘𝑋) = ( bday ‘(𝐴 |s 𝐵))) | 
| 15 | 12, 14 | eleqtrd 2842 | . . . . . . . . 9
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → ( bday
‘𝑥) ∈
( bday ‘(𝐴 |s 𝐵))) | 
| 16 | 2, 15 | nsyl3 138 | . . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → ¬ ( bday
‘(𝐴 |s 𝐵)) ⊆ ( bday ‘𝑥)) | 
| 17 |  | scutbday 27850 | . . . . . . . . . 10
⊢ (𝐴 <<s 𝐵 → ( bday
‘(𝐴 |s 𝐵)) = ∩ ( bday  “ {𝑡 ∈ 
No  ∣ (𝐴
<<s {𝑡} ∧ {𝑡} <<s 𝐵)})) | 
| 18 | 17 | ad3antrrr 730 | . . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ 𝐴 <<s {𝑥}) → ( bday
‘(𝐴 |s 𝐵)) = ∩ ( bday  “ {𝑡 ∈ 
No  ∣ (𝐴
<<s {𝑡} ∧ {𝑡} <<s 𝐵)})) | 
| 19 |  | bdayfn 27819 | . . . . . . . . . . 11
⊢  bday  Fn  No | 
| 20 |  | ssrab2 4079 | . . . . . . . . . . 11
⊢ {𝑡 ∈ 
No  ∣ (𝐴
<<s {𝑡} ∧ {𝑡} <<s 𝐵)} ⊆  No | 
| 21 |  | sneq 4635 | . . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑥 → {𝑡} = {𝑥}) | 
| 22 | 21 | breq2d 5154 | . . . . . . . . . . . . 13
⊢ (𝑡 = 𝑥 → (𝐴 <<s {𝑡} ↔ 𝐴 <<s {𝑥})) | 
| 23 | 21 | breq1d 5152 | . . . . . . . . . . . . 13
⊢ (𝑡 = 𝑥 → ({𝑡} <<s 𝐵 ↔ {𝑥} <<s 𝐵)) | 
| 24 | 22, 23 | anbi12d 632 | . . . . . . . . . . . 12
⊢ (𝑡 = 𝑥 → ((𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵) ↔ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))) | 
| 25 | 9 | adantr 480 | . . . . . . . . . . . 12
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ 𝐴 <<s {𝑥}) → 𝑥 ∈  No
) | 
| 26 |  | vsnex 5433 | . . . . . . . . . . . . . . 15
⊢ {𝑥} ∈ V | 
| 27 | 26 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → {𝑥} ∈ V) | 
| 28 |  | ssltex2 27833 | . . . . . . . . . . . . . . 15
⊢ (𝐴 <<s 𝐵 → 𝐵 ∈ V) | 
| 29 | 28 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → 𝐵 ∈ V) | 
| 30 | 9 | snssd 4808 | . . . . . . . . . . . . . 14
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → {𝑥} ⊆  No
) | 
| 31 |  | ssltss2 27835 | . . . . . . . . . . . . . . 15
⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆  No
) | 
| 32 | 31 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → 𝐵 ⊆  No
) | 
| 33 | 9 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ 𝑏 ∈ 𝐵) → 𝑥 ∈  No
) | 
| 34 |  | simpr 484 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → 𝑋 = (𝐴 |s 𝐵)) | 
| 35 |  | simpl 482 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → 𝐴 <<s 𝐵) | 
| 36 | 35 | scutcld 27849 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → (𝐴 |s 𝐵) ∈  No
) | 
| 37 | 34, 36 | eqeltrd 2840 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → 𝑋 ∈  No
) | 
| 38 | 37 | ad2antrr 726 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ 𝑏 ∈ 𝐵) → 𝑋 ∈  No
) | 
| 39 | 32 | sselda 3982 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈  No
) | 
| 40 |  | leftval 27903 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ( L
‘𝑋) = {𝑥 ∈ ( O ‘( bday ‘𝑋)) ∣ 𝑥 <s 𝑋} | 
| 41 | 40 | a1i 11 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → ( L ‘𝑋) = {𝑥 ∈ ( O ‘(
bday ‘𝑋))
∣ 𝑥 <s 𝑋}) | 
| 42 | 41 | eleq2d 2826 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → (𝑥 ∈ ( L ‘𝑋) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘(
bday ‘𝑋))
∣ 𝑥 <s 𝑋})) | 
| 43 |  | rabid 3457 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ {𝑥 ∈ ( O ‘(
bday ‘𝑋))
∣ 𝑥 <s 𝑋} ↔ (𝑥 ∈ ( O ‘(
bday ‘𝑋))
∧ 𝑥 <s 𝑋)) | 
| 44 | 42, 43 | bitrdi 287 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → (𝑥 ∈ ( L ‘𝑋) ↔ (𝑥 ∈ ( O ‘(
bday ‘𝑋))
∧ 𝑥 <s 𝑋))) | 
| 45 | 44 | simplbda 499 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → 𝑥 <s 𝑋) | 
| 46 | 45 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ 𝑏 ∈ 𝐵) → 𝑥 <s 𝑋) | 
| 47 |  | simpllr 775 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ 𝑏 ∈ 𝐵) → 𝑋 = (𝐴 |s 𝐵)) | 
| 48 |  | scutcut 27847 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈  No 
∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) | 
| 49 | 48 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → ((𝐴 |s 𝐵) ∈  No 
∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) | 
| 50 | 49 | simp3d 1144 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → {(𝐴 |s 𝐵)} <<s 𝐵) | 
| 51 |  | ovex 7465 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 |s 𝐵) ∈ V | 
| 52 | 51 | snid 4661 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 |s 𝐵) ∈ {(𝐴 |s 𝐵)} | 
| 53 |  | ssltsepc 27839 | . . . . . . . . . . . . . . . . . . . 20
⊢ (({(𝐴 |s 𝐵)} <<s 𝐵 ∧ (𝐴 |s 𝐵) ∈ {(𝐴 |s 𝐵)} ∧ 𝑏 ∈ 𝐵) → (𝐴 |s 𝐵) <s 𝑏) | 
| 54 | 52, 53 | mp3an2 1450 | . . . . . . . . . . . . . . . . . . 19
⊢ (({(𝐴 |s 𝐵)} <<s 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝐴 |s 𝐵) <s 𝑏) | 
| 55 | 50, 54 | sylan 580 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ 𝑏 ∈ 𝐵) → (𝐴 |s 𝐵) <s 𝑏) | 
| 56 | 47, 55 | eqbrtrd 5164 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ 𝑏 ∈ 𝐵) → 𝑋 <s 𝑏) | 
| 57 | 33, 38, 39, 46, 56 | slttrd 27805 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ 𝑏 ∈ 𝐵) → 𝑥 <s 𝑏) | 
| 58 | 57 | 3adant2 1131 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ 𝑎 ∈ {𝑥} ∧ 𝑏 ∈ 𝐵) → 𝑥 <s 𝑏) | 
| 59 |  | velsn 4641 | . . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ {𝑥} ↔ 𝑎 = 𝑥) | 
| 60 |  | breq1 5145 | . . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑥 → (𝑎 <s 𝑏 ↔ 𝑥 <s 𝑏)) | 
| 61 | 59, 60 | sylbi 217 | . . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ {𝑥} → (𝑎 <s 𝑏 ↔ 𝑥 <s 𝑏)) | 
| 62 | 61 | 3ad2ant2 1134 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ 𝑎 ∈ {𝑥} ∧ 𝑏 ∈ 𝐵) → (𝑎 <s 𝑏 ↔ 𝑥 <s 𝑏)) | 
| 63 | 58, 62 | mpbird 257 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ 𝑎 ∈ {𝑥} ∧ 𝑏 ∈ 𝐵) → 𝑎 <s 𝑏) | 
| 64 | 27, 29, 30, 32, 63 | ssltd 27837 | . . . . . . . . . . . . 13
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → {𝑥} <<s 𝐵) | 
| 65 | 64 | anim1ci 616 | . . . . . . . . . . . 12
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ 𝐴 <<s {𝑥}) → (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)) | 
| 66 | 24, 25, 65 | elrabd 3693 | . . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ 𝐴 <<s {𝑥}) → 𝑥 ∈ {𝑡 ∈  No 
∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}) | 
| 67 |  | fnfvima 7254 | . . . . . . . . . . 11
⊢ (( bday  Fn  No  ∧ {𝑡 ∈ 
No  ∣ (𝐴
<<s {𝑡} ∧ {𝑡} <<s 𝐵)} ⊆  No 
∧ 𝑥 ∈ {𝑡 ∈ 
No  ∣ (𝐴
<<s {𝑡} ∧ {𝑡} <<s 𝐵)}) → ( bday
‘𝑥) ∈
( bday  “ {𝑡 ∈  No 
∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)})) | 
| 68 | 19, 20, 66, 67 | mp3an12i 1466 | . . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ 𝐴 <<s {𝑥}) → ( bday
‘𝑥) ∈
( bday  “ {𝑡 ∈  No 
∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)})) | 
| 69 |  | intss1 4962 | . . . . . . . . . 10
⊢ (( bday ‘𝑥) ∈ ( bday 
“ {𝑡 ∈  No  ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}) → ∩
( bday  “ {𝑡 ∈  No 
∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}) ⊆ ( bday
‘𝑥)) | 
| 70 | 68, 69 | syl 17 | . . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ 𝐴 <<s {𝑥}) → ∩ ( bday  “ {𝑡 ∈  No 
∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}) ⊆ ( bday
‘𝑥)) | 
| 71 | 18, 70 | eqsstrd 4017 | . . . . . . . 8
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ 𝐴 <<s {𝑥}) → ( bday
‘(𝐴 |s 𝐵)) ⊆ ( bday ‘𝑥)) | 
| 72 | 16, 71 | mtand 815 | . . . . . . 7
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → ¬ 𝐴 <<s {𝑥}) | 
| 73 |  | ssltex1 27832 | . . . . . . . . . 10
⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) | 
| 74 | 73 | ad3antrrr 730 | . . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ ∀𝑦 ∈ 𝐴 ∀𝑡 ∈ {𝑥}𝑦 <s 𝑡) → 𝐴 ∈ V) | 
| 75 | 74, 26 | jctir 520 | . . . . . . . 8
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ ∀𝑦 ∈ 𝐴 ∀𝑡 ∈ {𝑥}𝑦 <s 𝑡) → (𝐴 ∈ V ∧ {𝑥} ∈ V)) | 
| 76 |  | ssltss1 27834 | . . . . . . . . . 10
⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆  No
) | 
| 77 | 76 | ad3antrrr 730 | . . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ ∀𝑦 ∈ 𝐴 ∀𝑡 ∈ {𝑥}𝑦 <s 𝑡) → 𝐴 ⊆  No
) | 
| 78 | 9 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ ∀𝑦 ∈ 𝐴 ∀𝑡 ∈ {𝑥}𝑦 <s 𝑡) → 𝑥 ∈  No
) | 
| 79 | 78 | snssd 4808 | . . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ ∀𝑦 ∈ 𝐴 ∀𝑡 ∈ {𝑥}𝑦 <s 𝑡) → {𝑥} ⊆  No
) | 
| 80 |  | simpr 484 | . . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ ∀𝑦 ∈ 𝐴 ∀𝑡 ∈ {𝑥}𝑦 <s 𝑡) → ∀𝑦 ∈ 𝐴 ∀𝑡 ∈ {𝑥}𝑦 <s 𝑡) | 
| 81 | 77, 79, 80 | 3jca 1128 | . . . . . . . 8
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ ∀𝑦 ∈ 𝐴 ∀𝑡 ∈ {𝑥}𝑦 <s 𝑡) → (𝐴 ⊆  No 
∧ {𝑥} ⊆  No  ∧ ∀𝑦 ∈ 𝐴 ∀𝑡 ∈ {𝑥}𝑦 <s 𝑡)) | 
| 82 |  | brsslt 27831 | . . . . . . . 8
⊢ (𝐴 <<s {𝑥} ↔ ((𝐴 ∈ V ∧ {𝑥} ∈ V) ∧ (𝐴 ⊆  No 
∧ {𝑥} ⊆  No  ∧ ∀𝑦 ∈ 𝐴 ∀𝑡 ∈ {𝑥}𝑦 <s 𝑡))) | 
| 83 | 75, 81, 82 | sylanbrc 583 | . . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ ∀𝑦 ∈ 𝐴 ∀𝑡 ∈ {𝑥}𝑦 <s 𝑡) → 𝐴 <<s {𝑥}) | 
| 84 | 72, 83 | mtand 815 | . . . . . 6
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → ¬ ∀𝑦 ∈ 𝐴 ∀𝑡 ∈ {𝑥}𝑦 <s 𝑡) | 
| 85 |  | rexnal 3099 | . . . . . . 7
⊢
(∃𝑡 ∈
{𝑥} ¬ ∀𝑦 ∈ 𝐴 𝑦 <s 𝑡 ↔ ¬ ∀𝑡 ∈ {𝑥}∀𝑦 ∈ 𝐴 𝑦 <s 𝑡) | 
| 86 |  | ralcom 3288 | . . . . . . 7
⊢
(∀𝑡 ∈
{𝑥}∀𝑦 ∈ 𝐴 𝑦 <s 𝑡 ↔ ∀𝑦 ∈ 𝐴 ∀𝑡 ∈ {𝑥}𝑦 <s 𝑡) | 
| 87 | 85, 86 | xchbinx 334 | . . . . . 6
⊢
(∃𝑡 ∈
{𝑥} ¬ ∀𝑦 ∈ 𝐴 𝑦 <s 𝑡 ↔ ¬ ∀𝑦 ∈ 𝐴 ∀𝑡 ∈ {𝑥}𝑦 <s 𝑡) | 
| 88 | 84, 87 | sylibr 234 | . . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → ∃𝑡 ∈ {𝑥} ¬ ∀𝑦 ∈ 𝐴 𝑦 <s 𝑡) | 
| 89 |  | vex 3483 | . . . . . 6
⊢ 𝑥 ∈ V | 
| 90 |  | breq2 5146 | . . . . . . . 8
⊢ (𝑡 = 𝑥 → (𝑦 <s 𝑡 ↔ 𝑦 <s 𝑥)) | 
| 91 | 90 | ralbidv 3177 | . . . . . . 7
⊢ (𝑡 = 𝑥 → (∀𝑦 ∈ 𝐴 𝑦 <s 𝑡 ↔ ∀𝑦 ∈ 𝐴 𝑦 <s 𝑥)) | 
| 92 | 91 | notbid 318 | . . . . . 6
⊢ (𝑡 = 𝑥 → (¬ ∀𝑦 ∈ 𝐴 𝑦 <s 𝑡 ↔ ¬ ∀𝑦 ∈ 𝐴 𝑦 <s 𝑥)) | 
| 93 | 89, 92 | rexsn 4681 | . . . . 5
⊢
(∃𝑡 ∈
{𝑥} ¬ ∀𝑦 ∈ 𝐴 𝑦 <s 𝑡 ↔ ¬ ∀𝑦 ∈ 𝐴 𝑦 <s 𝑥) | 
| 94 | 88, 93 | sylib 218 | . . . 4
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → ¬ ∀𝑦 ∈ 𝐴 𝑦 <s 𝑥) | 
| 95 | 76 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → 𝐴 ⊆  No
) | 
| 96 | 95 | sselda 3982 | . . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈  No
) | 
| 97 |  | slenlt 27798 | . . . . . . 7
⊢ ((𝑥 ∈ 
No  ∧ 𝑦 ∈
 No ) → (𝑥 ≤s 𝑦 ↔ ¬ 𝑦 <s 𝑥)) | 
| 98 | 9, 96, 97 | syl2an2r 685 | . . . . . 6
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) ∧ 𝑦 ∈ 𝐴) → (𝑥 ≤s 𝑦 ↔ ¬ 𝑦 <s 𝑥)) | 
| 99 | 98 | rexbidva 3176 | . . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → (∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦 ↔ ∃𝑦 ∈ 𝐴 ¬ 𝑦 <s 𝑥)) | 
| 100 |  | rexnal 3099 | . . . . 5
⊢
(∃𝑦 ∈
𝐴 ¬ 𝑦 <s 𝑥 ↔ ¬ ∀𝑦 ∈ 𝐴 𝑦 <s 𝑥) | 
| 101 | 99, 100 | bitrdi 287 | . . . 4
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → (∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦 ↔ ¬ ∀𝑦 ∈ 𝐴 𝑦 <s 𝑥)) | 
| 102 | 94, 101 | mpbird 257 | . . 3
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ ( L ‘𝑋)) → ∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦) | 
| 103 | 102 | ralrimiva 3145 | . 2
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → ∀𝑥 ∈ ( L ‘𝑋)∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦) | 
| 104 | 1 | onssneli 6499 | . . . . . . . . 9
⊢ (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday
‘𝑧) →
¬ ( bday ‘𝑧) ∈ ( bday
‘(𝐴 |s 𝐵))) | 
| 105 |  | rightssold 27919 | . . . . . . . . . . . . 13
⊢ ( R
‘𝑋) ⊆ ( O
‘( bday ‘𝑋)) | 
| 106 | 105 | a1i 11 | . . . . . . . . . . . 12
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → ( R ‘𝑋) ⊆ ( O ‘(
bday ‘𝑋))) | 
| 107 | 106 | sselda 3982 | . . . . . . . . . . 11
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → 𝑧 ∈ ( O ‘(
bday ‘𝑋))) | 
| 108 |  | rightssno 27921 | . . . . . . . . . . . . . 14
⊢ ( R
‘𝑋) ⊆  No | 
| 109 | 108 | a1i 11 | . . . . . . . . . . . . 13
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → ( R ‘𝑋) ⊆  No
) | 
| 110 | 109 | sselda 3982 | . . . . . . . . . . . 12
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → 𝑧 ∈  No
) | 
| 111 |  | oldbday 27940 | . . . . . . . . . . . 12
⊢ ((( bday ‘𝑋) ∈ On ∧ 𝑧 ∈  No )
→ (𝑧 ∈ ( O
‘( bday ‘𝑋)) ↔ ( bday
‘𝑧) ∈
( bday ‘𝑋))) | 
| 112 | 6, 110, 111 | sylancr 587 | . . . . . . . . . . 11
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → (𝑧 ∈ ( O ‘(
bday ‘𝑋))
↔ ( bday ‘𝑧) ∈ ( bday
‘𝑋))) | 
| 113 | 107, 112 | mpbid 232 | . . . . . . . . . 10
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → ( bday
‘𝑧) ∈
( bday ‘𝑋)) | 
| 114 |  | simplr 768 | . . . . . . . . . . 11
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → 𝑋 = (𝐴 |s 𝐵)) | 
| 115 | 114 | fveq2d 6909 | . . . . . . . . . 10
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → ( bday
‘𝑋) = ( bday ‘(𝐴 |s 𝐵))) | 
| 116 | 113, 115 | eleqtrd 2842 | . . . . . . . . 9
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → ( bday
‘𝑧) ∈
( bday ‘(𝐴 |s 𝐵))) | 
| 117 | 104, 116 | nsyl3 138 | . . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → ¬ ( bday
‘(𝐴 |s 𝐵)) ⊆ ( bday ‘𝑧)) | 
| 118 | 17 | ad3antrrr 730 | . . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ {𝑧} <<s 𝐵) → ( bday
‘(𝐴 |s 𝐵)) = ∩ ( bday  “ {𝑡 ∈ 
No  ∣ (𝐴
<<s {𝑡} ∧ {𝑡} <<s 𝐵)})) | 
| 119 |  | sneq 4635 | . . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑧 → {𝑡} = {𝑧}) | 
| 120 | 119 | breq2d 5154 | . . . . . . . . . . . . 13
⊢ (𝑡 = 𝑧 → (𝐴 <<s {𝑡} ↔ 𝐴 <<s {𝑧})) | 
| 121 | 119 | breq1d 5152 | . . . . . . . . . . . . 13
⊢ (𝑡 = 𝑧 → ({𝑡} <<s 𝐵 ↔ {𝑧} <<s 𝐵)) | 
| 122 | 120, 121 | anbi12d 632 | . . . . . . . . . . . 12
⊢ (𝑡 = 𝑧 → ((𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵) ↔ (𝐴 <<s {𝑧} ∧ {𝑧} <<s 𝐵))) | 
| 123 | 110 | adantr 480 | . . . . . . . . . . . 12
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ {𝑧} <<s 𝐵) → 𝑧 ∈  No
) | 
| 124 | 73 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → 𝐴 ∈ V) | 
| 125 |  | vsnex 5433 | . . . . . . . . . . . . . . 15
⊢ {𝑧} ∈ V | 
| 126 | 125 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → {𝑧} ∈ V) | 
| 127 | 76 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → 𝐴 ⊆  No
) | 
| 128 | 110 | snssd 4808 | . . . . . . . . . . . . . 14
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → {𝑧} ⊆  No
) | 
| 129 | 127 | sselda 3982 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈  No
) | 
| 130 | 37 | ad2antrr 726 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ 𝑎 ∈ 𝐴) → 𝑋 ∈  No
) | 
| 131 | 110 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ 𝑎 ∈ 𝐴) → 𝑧 ∈  No
) | 
| 132 | 48 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → ((𝐴 |s 𝐵) ∈  No 
∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) | 
| 133 | 132 | simp2d 1143 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → 𝐴 <<s {(𝐴 |s 𝐵)}) | 
| 134 |  | ssltsepc 27839 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 <<s {(𝐴 |s 𝐵)} ∧ 𝑎 ∈ 𝐴 ∧ (𝐴 |s 𝐵) ∈ {(𝐴 |s 𝐵)}) → 𝑎 <s (𝐴 |s 𝐵)) | 
| 135 | 52, 134 | mp3an3 1451 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 <<s {(𝐴 |s 𝐵)} ∧ 𝑎 ∈ 𝐴) → 𝑎 <s (𝐴 |s 𝐵)) | 
| 136 | 133, 135 | sylan 580 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ 𝑎 ∈ 𝐴) → 𝑎 <s (𝐴 |s 𝐵)) | 
| 137 |  | simpllr 775 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ 𝑎 ∈ 𝐴) → 𝑋 = (𝐴 |s 𝐵)) | 
| 138 | 136, 137 | breqtrrd 5170 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ 𝑎 ∈ 𝐴) → 𝑎 <s 𝑋) | 
| 139 |  | rightval 27904 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ( R
‘𝑋) = {𝑧 ∈ ( O ‘( bday ‘𝑋)) ∣ 𝑋 <s 𝑧} | 
| 140 | 139 | a1i 11 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → ( R ‘𝑋) = {𝑧 ∈ ( O ‘(
bday ‘𝑋))
∣ 𝑋 <s 𝑧}) | 
| 141 | 140 | eleq2d 2826 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → (𝑧 ∈ ( R ‘𝑋) ↔ 𝑧 ∈ {𝑧 ∈ ( O ‘(
bday ‘𝑋))
∣ 𝑋 <s 𝑧})) | 
| 142 |  | rabid 3457 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ {𝑧 ∈ ( O ‘(
bday ‘𝑋))
∣ 𝑋 <s 𝑧} ↔ (𝑧 ∈ ( O ‘(
bday ‘𝑋))
∧ 𝑋 <s 𝑧)) | 
| 143 | 141, 142 | bitrdi 287 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → (𝑧 ∈ ( R ‘𝑋) ↔ (𝑧 ∈ ( O ‘(
bday ‘𝑋))
∧ 𝑋 <s 𝑧))) | 
| 144 | 143 | simplbda 499 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → 𝑋 <s 𝑧) | 
| 145 | 144 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ 𝑎 ∈ 𝐴) → 𝑋 <s 𝑧) | 
| 146 | 129, 130,
131, 138, 145 | slttrd 27805 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ 𝑎 ∈ 𝐴) → 𝑎 <s 𝑧) | 
| 147 | 146 | 3adant3 1132 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ {𝑧}) → 𝑎 <s 𝑧) | 
| 148 |  | velsn 4641 | . . . . . . . . . . . . . . . . 17
⊢ (𝑏 ∈ {𝑧} ↔ 𝑏 = 𝑧) | 
| 149 |  | breq2 5146 | . . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑧 → (𝑎 <s 𝑏 ↔ 𝑎 <s 𝑧)) | 
| 150 | 148, 149 | sylbi 217 | . . . . . . . . . . . . . . . 16
⊢ (𝑏 ∈ {𝑧} → (𝑎 <s 𝑏 ↔ 𝑎 <s 𝑧)) | 
| 151 | 150 | 3ad2ant3 1135 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ {𝑧}) → (𝑎 <s 𝑏 ↔ 𝑎 <s 𝑧)) | 
| 152 | 147, 151 | mpbird 257 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ {𝑧}) → 𝑎 <s 𝑏) | 
| 153 | 124, 126,
127, 128, 152 | ssltd 27837 | . . . . . . . . . . . . 13
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → 𝐴 <<s {𝑧}) | 
| 154 | 153 | anim1i 615 | . . . . . . . . . . . 12
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ {𝑧} <<s 𝐵) → (𝐴 <<s {𝑧} ∧ {𝑧} <<s 𝐵)) | 
| 155 | 122, 123,
154 | elrabd 3693 | . . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ {𝑧} <<s 𝐵) → 𝑧 ∈ {𝑡 ∈  No 
∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}) | 
| 156 |  | fnfvima 7254 | . . . . . . . . . . 11
⊢ (( bday  Fn  No  ∧ {𝑡 ∈ 
No  ∣ (𝐴
<<s {𝑡} ∧ {𝑡} <<s 𝐵)} ⊆  No 
∧ 𝑧 ∈ {𝑡 ∈ 
No  ∣ (𝐴
<<s {𝑡} ∧ {𝑡} <<s 𝐵)}) → ( bday
‘𝑧) ∈
( bday  “ {𝑡 ∈  No 
∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)})) | 
| 157 | 19, 20, 155, 156 | mp3an12i 1466 | . . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ {𝑧} <<s 𝐵) → ( bday
‘𝑧) ∈
( bday  “ {𝑡 ∈  No 
∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)})) | 
| 158 |  | intss1 4962 | . . . . . . . . . 10
⊢ (( bday ‘𝑧) ∈ ( bday 
“ {𝑡 ∈  No  ∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}) → ∩
( bday  “ {𝑡 ∈  No 
∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}) ⊆ ( bday
‘𝑧)) | 
| 159 | 157, 158 | syl 17 | . . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ {𝑧} <<s 𝐵) → ∩ ( bday  “ {𝑡 ∈  No 
∣ (𝐴 <<s {𝑡} ∧ {𝑡} <<s 𝐵)}) ⊆ ( bday
‘𝑧)) | 
| 160 | 118, 159 | eqsstrd 4017 | . . . . . . . 8
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ {𝑧} <<s 𝐵) → ( bday
‘(𝐴 |s 𝐵)) ⊆ ( bday ‘𝑧)) | 
| 161 | 117, 160 | mtand 815 | . . . . . . 7
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → ¬ {𝑧} <<s 𝐵) | 
| 162 | 28 | ad3antrrr 730 | . . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ ∀𝑡 ∈ {𝑧}∀𝑤 ∈ 𝐵 𝑡 <s 𝑤) → 𝐵 ∈ V) | 
| 163 | 162, 125 | jctil 519 | . . . . . . . 8
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ ∀𝑡 ∈ {𝑧}∀𝑤 ∈ 𝐵 𝑡 <s 𝑤) → ({𝑧} ∈ V ∧ 𝐵 ∈ V)) | 
| 164 | 128 | adantr 480 | . . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ ∀𝑡 ∈ {𝑧}∀𝑤 ∈ 𝐵 𝑡 <s 𝑤) → {𝑧} ⊆  No
) | 
| 165 | 31 | ad3antrrr 730 | . . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ ∀𝑡 ∈ {𝑧}∀𝑤 ∈ 𝐵 𝑡 <s 𝑤) → 𝐵 ⊆  No
) | 
| 166 |  | simpr 484 | . . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ ∀𝑡 ∈ {𝑧}∀𝑤 ∈ 𝐵 𝑡 <s 𝑤) → ∀𝑡 ∈ {𝑧}∀𝑤 ∈ 𝐵 𝑡 <s 𝑤) | 
| 167 | 164, 165,
166 | 3jca 1128 | . . . . . . . 8
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ ∀𝑡 ∈ {𝑧}∀𝑤 ∈ 𝐵 𝑡 <s 𝑤) → ({𝑧} ⊆  No 
∧ 𝐵 ⊆  No  ∧ ∀𝑡 ∈ {𝑧}∀𝑤 ∈ 𝐵 𝑡 <s 𝑤)) | 
| 168 |  | brsslt 27831 | . . . . . . . 8
⊢ ({𝑧} <<s 𝐵 ↔ (({𝑧} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑧} ⊆  No 
∧ 𝐵 ⊆  No  ∧ ∀𝑡 ∈ {𝑧}∀𝑤 ∈ 𝐵 𝑡 <s 𝑤))) | 
| 169 | 163, 167,
168 | sylanbrc 583 | . . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ ∀𝑡 ∈ {𝑧}∀𝑤 ∈ 𝐵 𝑡 <s 𝑤) → {𝑧} <<s 𝐵) | 
| 170 | 161, 169 | mtand 815 | . . . . . 6
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → ¬ ∀𝑡 ∈ {𝑧}∀𝑤 ∈ 𝐵 𝑡 <s 𝑤) | 
| 171 |  | rexnal 3099 | . . . . . 6
⊢
(∃𝑡 ∈
{𝑧} ¬ ∀𝑤 ∈ 𝐵 𝑡 <s 𝑤 ↔ ¬ ∀𝑡 ∈ {𝑧}∀𝑤 ∈ 𝐵 𝑡 <s 𝑤) | 
| 172 | 170, 171 | sylibr 234 | . . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → ∃𝑡 ∈ {𝑧} ¬ ∀𝑤 ∈ 𝐵 𝑡 <s 𝑤) | 
| 173 |  | vex 3483 | . . . . . 6
⊢ 𝑧 ∈ V | 
| 174 |  | breq1 5145 | . . . . . . . 8
⊢ (𝑡 = 𝑧 → (𝑡 <s 𝑤 ↔ 𝑧 <s 𝑤)) | 
| 175 | 174 | ralbidv 3177 | . . . . . . 7
⊢ (𝑡 = 𝑧 → (∀𝑤 ∈ 𝐵 𝑡 <s 𝑤 ↔ ∀𝑤 ∈ 𝐵 𝑧 <s 𝑤)) | 
| 176 | 175 | notbid 318 | . . . . . 6
⊢ (𝑡 = 𝑧 → (¬ ∀𝑤 ∈ 𝐵 𝑡 <s 𝑤 ↔ ¬ ∀𝑤 ∈ 𝐵 𝑧 <s 𝑤)) | 
| 177 | 173, 176 | rexsn 4681 | . . . . 5
⊢
(∃𝑡 ∈
{𝑧} ¬ ∀𝑤 ∈ 𝐵 𝑡 <s 𝑤 ↔ ¬ ∀𝑤 ∈ 𝐵 𝑧 <s 𝑤) | 
| 178 | 172, 177 | sylib 218 | . . . 4
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → ¬ ∀𝑤 ∈ 𝐵 𝑧 <s 𝑤) | 
| 179 | 31 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → 𝐵 ⊆  No
) | 
| 180 | 179 | sselda 3982 | . . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ 𝑤 ∈ 𝐵) → 𝑤 ∈  No
) | 
| 181 | 110 | adantr 480 | . . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ 𝑤 ∈ 𝐵) → 𝑧 ∈  No
) | 
| 182 |  | slenlt 27798 | . . . . . . 7
⊢ ((𝑤 ∈ 
No  ∧ 𝑧 ∈
 No ) → (𝑤 ≤s 𝑧 ↔ ¬ 𝑧 <s 𝑤)) | 
| 183 | 180, 181,
182 | syl2anc 584 | . . . . . 6
⊢ ((((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) ∧ 𝑤 ∈ 𝐵) → (𝑤 ≤s 𝑧 ↔ ¬ 𝑧 <s 𝑤)) | 
| 184 | 183 | rexbidva 3176 | . . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → (∃𝑤 ∈ 𝐵 𝑤 ≤s 𝑧 ↔ ∃𝑤 ∈ 𝐵 ¬ 𝑧 <s 𝑤)) | 
| 185 |  | rexnal 3099 | . . . . 5
⊢
(∃𝑤 ∈
𝐵 ¬ 𝑧 <s 𝑤 ↔ ¬ ∀𝑤 ∈ 𝐵 𝑧 <s 𝑤) | 
| 186 | 184, 185 | bitrdi 287 | . . . 4
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → (∃𝑤 ∈ 𝐵 𝑤 ≤s 𝑧 ↔ ¬ ∀𝑤 ∈ 𝐵 𝑧 <s 𝑤)) | 
| 187 | 178, 186 | mpbird 257 | . . 3
⊢ (((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ ( R ‘𝑋)) → ∃𝑤 ∈ 𝐵 𝑤 ≤s 𝑧) | 
| 188 | 187 | ralrimiva 3145 | . 2
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → ∀𝑧 ∈ ( R ‘𝑋)∃𝑤 ∈ 𝐵 𝑤 ≤s 𝑧) | 
| 189 | 103, 188 | jca 511 | 1
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → (∀𝑥 ∈ ( L ‘𝑋)∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ ( R ‘𝑋)∃𝑤 ∈ 𝐵 𝑤 ≤s 𝑧)) |