MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltdisj Structured version   Visualization version   GIF version

Theorem ssltdisj 27881
Description: If 𝐴 preceeds 𝐵, then 𝐴 and 𝐵 are disjoint. (Contributed by Scott Fenton, 18-Sep-2024.)
Assertion
Ref Expression
ssltdisj (𝐴 <<s 𝐵 → (𝐴𝐵) = ∅)

Proof of Theorem ssltdisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssltss1 27848 . . . . . 6 (𝐴 <<s 𝐵𝐴 No )
21sselda 3995 . . . . 5 ((𝐴 <<s 𝐵𝑥𝐴) → 𝑥 No )
3 sltirr 27806 . . . . 5 (𝑥 No → ¬ 𝑥 <s 𝑥)
42, 3syl 17 . . . 4 ((𝐴 <<s 𝐵𝑥𝐴) → ¬ 𝑥 <s 𝑥)
5 ssltsepc 27853 . . . . 5 ((𝐴 <<s 𝐵𝑥𝐴𝑥𝐵) → 𝑥 <s 𝑥)
653expa 1117 . . . 4 (((𝐴 <<s 𝐵𝑥𝐴) ∧ 𝑥𝐵) → 𝑥 <s 𝑥)
74, 6mtand 816 . . 3 ((𝐴 <<s 𝐵𝑥𝐴) → ¬ 𝑥𝐵)
87ralrimiva 3144 . 2 (𝐴 <<s 𝐵 → ∀𝑥𝐴 ¬ 𝑥𝐵)
9 disj 4456 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
108, 9sylibr 234 1 (𝐴 <<s 𝐵 → (𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  cin 3962  c0 4339   class class class wbr 5148   No csur 27699   <s cslt 27700   <<s csslt 27840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-1o 8505  df-2o 8506  df-no 27702  df-slt 27703  df-sslt 27841
This theorem is referenced by:  sltlpss  27960  slelss  27961
  Copyright terms: Public domain W3C validator