Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssltdisj Structured version   Visualization version   GIF version

Theorem ssltdisj 34015
Description: If 𝐴 preceeds 𝐵, then 𝐴 and 𝐵 are disjoint. (Contributed by Scott Fenton, 18-Sep-2024.)
Assertion
Ref Expression
ssltdisj (𝐴 <<s 𝐵 → (𝐴𝐵) = ∅)

Proof of Theorem ssltdisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssltss1 33983 . . . . . 6 (𝐴 <<s 𝐵𝐴 No )
21sselda 3921 . . . . 5 ((𝐴 <<s 𝐵𝑥𝐴) → 𝑥 No )
3 sltirr 33949 . . . . 5 (𝑥 No → ¬ 𝑥 <s 𝑥)
42, 3syl 17 . . . 4 ((𝐴 <<s 𝐵𝑥𝐴) → ¬ 𝑥 <s 𝑥)
5 ssltsepc 33987 . . . . 5 ((𝐴 <<s 𝐵𝑥𝐴𝑥𝐵) → 𝑥 <s 𝑥)
653expa 1117 . . . 4 (((𝐴 <<s 𝐵𝑥𝐴) ∧ 𝑥𝐵) → 𝑥 <s 𝑥)
74, 6mtand 813 . . 3 ((𝐴 <<s 𝐵𝑥𝐴) → ¬ 𝑥𝐵)
87ralrimiva 3103 . 2 (𝐴 <<s 𝐵 → ∀𝑥𝐴 ¬ 𝑥𝐵)
9 disj 4381 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
108, 9sylibr 233 1 (𝐴 <<s 𝐵 → (𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  cin 3886  c0 4256   class class class wbr 5074   No csur 33843   <s cslt 33844   <<s csslt 33975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-1o 8297  df-2o 8298  df-no 33846  df-slt 33847  df-sslt 33976
This theorem is referenced by:  sltlpss  34087
  Copyright terms: Public domain W3C validator