Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssltdisj | Structured version Visualization version GIF version |
Description: If 𝐴 preceeds 𝐵, then 𝐴 and 𝐵 are disjoint. (Contributed by Scott Fenton, 18-Sep-2024.) |
Ref | Expression |
---|---|
ssltdisj | ⊢ (𝐴 <<s 𝐵 → (𝐴 ∩ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssltss1 33910 | . . . . . 6 ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) | |
2 | 1 | sselda 3917 | . . . . 5 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ No ) |
3 | sltirr 33876 | . . . . 5 ⊢ (𝑥 ∈ No → ¬ 𝑥 <s 𝑥) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 <s 𝑥) |
5 | ssltsepc 33914 | . . . . 5 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑥 <s 𝑥) | |
6 | 5 | 3expa 1116 | . . . 4 ⊢ (((𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → 𝑥 <s 𝑥) |
7 | 4, 6 | mtand 812 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ 𝐵) |
8 | 7 | ralrimiva 3107 | . 2 ⊢ (𝐴 <<s 𝐵 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
9 | disj 4378 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | |
10 | 8, 9 | sylibr 233 | 1 ⊢ (𝐴 <<s 𝐵 → (𝐴 ∩ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∩ cin 3882 ∅c0 4253 class class class wbr 5070 No csur 33770 <s cslt 33771 <<s csslt 33902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-1o 8267 df-2o 8268 df-no 33773 df-slt 33774 df-sslt 33903 |
This theorem is referenced by: sltlpss 34014 |
Copyright terms: Public domain | W3C validator |