MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltdisj Structured version   Visualization version   GIF version

Theorem ssltdisj 27311
Description: If 𝐴 preceeds 𝐵, then 𝐴 and 𝐵 are disjoint. (Contributed by Scott Fenton, 18-Sep-2024.)
Assertion
Ref Expression
ssltdisj (𝐴 <<s 𝐵 → (𝐴𝐵) = ∅)

Proof of Theorem ssltdisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssltss1 27279 . . . . . 6 (𝐴 <<s 𝐵𝐴 No )
21sselda 3981 . . . . 5 ((𝐴 <<s 𝐵𝑥𝐴) → 𝑥 No )
3 sltirr 27238 . . . . 5 (𝑥 No → ¬ 𝑥 <s 𝑥)
42, 3syl 17 . . . 4 ((𝐴 <<s 𝐵𝑥𝐴) → ¬ 𝑥 <s 𝑥)
5 ssltsepc 27283 . . . . 5 ((𝐴 <<s 𝐵𝑥𝐴𝑥𝐵) → 𝑥 <s 𝑥)
653expa 1118 . . . 4 (((𝐴 <<s 𝐵𝑥𝐴) ∧ 𝑥𝐵) → 𝑥 <s 𝑥)
74, 6mtand 814 . . 3 ((𝐴 <<s 𝐵𝑥𝐴) → ¬ 𝑥𝐵)
87ralrimiva 3146 . 2 (𝐴 <<s 𝐵 → ∀𝑥𝐴 ¬ 𝑥𝐵)
9 disj 4446 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
108, 9sylibr 233 1 (𝐴 <<s 𝐵 → (𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  cin 3946  c0 4321   class class class wbr 5147   No csur 27132   <s cslt 27133   <<s csslt 27271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-1o 8462  df-2o 8463  df-no 27135  df-slt 27136  df-sslt 27272
This theorem is referenced by:  sltlpss  27390
  Copyright terms: Public domain W3C validator