| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltdisj | Structured version Visualization version GIF version | ||
| Description: If 𝐴 preceeds 𝐵, then 𝐴 and 𝐵 are disjoint. (Contributed by Scott Fenton, 18-Sep-2024.) |
| Ref | Expression |
|---|---|
| ssltdisj | ⊢ (𝐴 <<s 𝐵 → (𝐴 ∩ 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssltss1 27700 | . . . . . 6 ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) | |
| 2 | 1 | sselda 3946 | . . . . 5 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ No ) |
| 3 | sltirr 27658 | . . . . 5 ⊢ (𝑥 ∈ No → ¬ 𝑥 <s 𝑥) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 <s 𝑥) |
| 5 | ssltsepc 27705 | . . . . 5 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑥 <s 𝑥) | |
| 6 | 5 | 3expa 1118 | . . . 4 ⊢ (((𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → 𝑥 <s 𝑥) |
| 7 | 4, 6 | mtand 815 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ 𝐵) |
| 8 | 7 | ralrimiva 3125 | . 2 ⊢ (𝐴 <<s 𝐵 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
| 9 | disj 4413 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | |
| 10 | 8, 9 | sylibr 234 | 1 ⊢ (𝐴 <<s 𝐵 → (𝐴 ∩ 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3913 ∅c0 4296 class class class wbr 5107 No csur 27551 <s cslt 27552 <<s csslt 27692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 df-sslt 27693 |
| This theorem is referenced by: sltlpss 27819 slelss 27820 |
| Copyright terms: Public domain | W3C validator |