MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltdisj Structured version   Visualization version   GIF version

Theorem ssltdisj 27759
Description: If 𝐴 preceeds 𝐵, then 𝐴 and 𝐵 are disjoint. (Contributed by Scott Fenton, 18-Sep-2024.)
Assertion
Ref Expression
ssltdisj (𝐴 <<s 𝐵 → (𝐴𝐵) = ∅)

Proof of Theorem ssltdisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssltss1 27723 . . . . . 6 (𝐴 <<s 𝐵𝐴 No )
21sselda 3929 . . . . 5 ((𝐴 <<s 𝐵𝑥𝐴) → 𝑥 No )
3 sltirr 27680 . . . . 5 (𝑥 No → ¬ 𝑥 <s 𝑥)
42, 3syl 17 . . . 4 ((𝐴 <<s 𝐵𝑥𝐴) → ¬ 𝑥 <s 𝑥)
5 ssltsepc 27729 . . . . 5 ((𝐴 <<s 𝐵𝑥𝐴𝑥𝐵) → 𝑥 <s 𝑥)
653expa 1118 . . . 4 (((𝐴 <<s 𝐵𝑥𝐴) ∧ 𝑥𝐵) → 𝑥 <s 𝑥)
74, 6mtand 815 . . 3 ((𝐴 <<s 𝐵𝑥𝐴) → ¬ 𝑥𝐵)
87ralrimiva 3124 . 2 (𝐴 <<s 𝐵 → ∀𝑥𝐴 ¬ 𝑥𝐵)
9 disj 4395 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
108, 9sylibr 234 1 (𝐴 <<s 𝐵 → (𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  cin 3896  c0 4278   class class class wbr 5086   No csur 27573   <s cslt 27574   <<s csslt 27715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ord 6304  df-on 6305  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-1o 8380  df-2o 8381  df-no 27576  df-slt 27577  df-sslt 27716
This theorem is referenced by:  sltlpss  27848  slelss  27849
  Copyright terms: Public domain W3C validator