Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssltdisj | Structured version Visualization version GIF version |
Description: If 𝐴 preceeds 𝐵, then 𝐴 and 𝐵 are disjoint. (Contributed by Scott Fenton, 18-Sep-2024.) |
Ref | Expression |
---|---|
ssltdisj | ⊢ (𝐴 <<s 𝐵 → (𝐴 ∩ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssltss1 33983 | . . . . . 6 ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) | |
2 | 1 | sselda 3921 | . . . . 5 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ No ) |
3 | sltirr 33949 | . . . . 5 ⊢ (𝑥 ∈ No → ¬ 𝑥 <s 𝑥) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 <s 𝑥) |
5 | ssltsepc 33987 | . . . . 5 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑥 <s 𝑥) | |
6 | 5 | 3expa 1117 | . . . 4 ⊢ (((𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → 𝑥 <s 𝑥) |
7 | 4, 6 | mtand 813 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ 𝐵) |
8 | 7 | ralrimiva 3103 | . 2 ⊢ (𝐴 <<s 𝐵 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
9 | disj 4381 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | |
10 | 8, 9 | sylibr 233 | 1 ⊢ (𝐴 <<s 𝐵 → (𝐴 ∩ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∩ cin 3886 ∅c0 4256 class class class wbr 5074 No csur 33843 <s cslt 33844 <<s csslt 33975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-1o 8297 df-2o 8298 df-no 33846 df-slt 33847 df-sslt 33976 |
This theorem is referenced by: sltlpss 34087 |
Copyright terms: Public domain | W3C validator |