![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssltdisj | Structured version Visualization version GIF version |
Description: If 𝐴 preceeds 𝐵, then 𝐴 and 𝐵 are disjoint. (Contributed by Scott Fenton, 18-Sep-2024.) |
Ref | Expression |
---|---|
ssltdisj | ⊢ (𝐴 <<s 𝐵 → (𝐴 ∩ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssltss1 27812 | . . . . . 6 ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) | |
2 | 1 | sselda 3978 | . . . . 5 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ No ) |
3 | sltirr 27770 | . . . . 5 ⊢ (𝑥 ∈ No → ¬ 𝑥 <s 𝑥) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 <s 𝑥) |
5 | ssltsepc 27817 | . . . . 5 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑥 <s 𝑥) | |
6 | 5 | 3expa 1115 | . . . 4 ⊢ (((𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → 𝑥 <s 𝑥) |
7 | 4, 6 | mtand 814 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ 𝐵) |
8 | 7 | ralrimiva 3136 | . 2 ⊢ (𝐴 <<s 𝐵 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
9 | disj 4444 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | |
10 | 8, 9 | sylibr 233 | 1 ⊢ (𝐴 <<s 𝐵 → (𝐴 ∩ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∩ cin 3945 ∅c0 4322 class class class wbr 5143 No csur 27663 <s cslt 27664 <<s csslt 27804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-1o 8485 df-2o 8486 df-no 27666 df-slt 27667 df-sslt 27805 |
This theorem is referenced by: sltlpss 27924 slelss 27925 |
Copyright terms: Public domain | W3C validator |