![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssltsepcd | Structured version Visualization version GIF version |
Description: Two elements of separated sets obey less-than. Deduction form of ssltsepc 27853. (Contributed by Scott Fenton, 25-Sep-2024.) |
Ref | Expression |
---|---|
ssltsepcd.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
ssltsepcd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
ssltsepcd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
ssltsepcd | ⊢ (𝜑 → 𝑋 <s 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssltsepcd.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
2 | ssltsepcd.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
3 | ssltsepcd.3 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | ssltsepc 27853 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 <s 𝑌) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ (𝜑 → 𝑋 <s 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5148 <s cslt 27700 <<s csslt 27840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-sslt 27841 |
This theorem is referenced by: sslttr 27867 cofsslt 27967 coinitsslt 27968 cofcutrtime 27976 addsproplem2 28018 addsproplem4 28020 addsproplem5 28021 addsproplem6 28022 addsuniflem 28049 negsproplem2 28076 negsproplem4 28078 negsproplem5 28079 negsproplem6 28080 negsunif 28102 mulsproplem5 28161 mulsproplem6 28162 mulsproplem7 28163 mulsproplem8 28164 mulsproplem12 28168 ssltmul1 28188 ssltmul2 28189 mulsuniflem 28190 precsexlem11 28256 |
Copyright terms: Public domain | W3C validator |