| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltsepcd | Structured version Visualization version GIF version | ||
| Description: Two elements of separated sets obey less-than. Deduction form of ssltsepc 27739. (Contributed by Scott Fenton, 25-Sep-2024.) |
| Ref | Expression |
|---|---|
| ssltsepcd.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| ssltsepcd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| ssltsepcd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ssltsepcd | ⊢ (𝜑 → 𝑋 <s 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssltsepcd.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
| 2 | ssltsepcd.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 3 | ssltsepcd.3 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ssltsepc 27739 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 <s 𝑌) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝑋 <s 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5102 <s cslt 27585 <<s csslt 27726 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-sslt 27727 |
| This theorem is referenced by: sslttr 27753 eqscut3 27770 cofsslt 27866 coinitsslt 27867 cofcutrtime 27875 addsproplem2 27917 addsproplem4 27919 addsproplem5 27920 addsproplem6 27921 addsuniflem 27948 negsproplem2 27975 negsproplem4 27977 negsproplem5 27978 negsproplem6 27979 negsunif 28001 mulsproplem5 28063 mulsproplem6 28064 mulsproplem7 28065 mulsproplem8 28066 mulsproplem12 28070 ssltmul1 28090 ssltmul2 28091 mulsuniflem 28092 precsexlem11 28159 twocut 28350 |
| Copyright terms: Public domain | W3C validator |