MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltsepcd Structured version   Visualization version   GIF version

Theorem ssltsepcd 27839
Description: Two elements of separated sets obey less-than. Deduction form of ssltsepc 27838. (Contributed by Scott Fenton, 25-Sep-2024.)
Hypotheses
Ref Expression
ssltsepcd.1 (𝜑𝐴 <<s 𝐵)
ssltsepcd.2 (𝜑𝑋𝐴)
ssltsepcd.3 (𝜑𝑌𝐵)
Assertion
Ref Expression
ssltsepcd (𝜑𝑋 <s 𝑌)

Proof of Theorem ssltsepcd
StepHypRef Expression
1 ssltsepcd.1 . 2 (𝜑𝐴 <<s 𝐵)
2 ssltsepcd.2 . 2 (𝜑𝑋𝐴)
3 ssltsepcd.3 . 2 (𝜑𝑌𝐵)
4 ssltsepc 27838 . 2 ((𝐴 <<s 𝐵𝑋𝐴𝑌𝐵) → 𝑋 <s 𝑌)
51, 2, 3, 4syl3anc 1373 1 (𝜑𝑋 <s 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5143   <s cslt 27685   <<s csslt 27825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-sslt 27826
This theorem is referenced by:  sslttr  27852  cofsslt  27952  coinitsslt  27953  cofcutrtime  27961  addsproplem2  28003  addsproplem4  28005  addsproplem5  28006  addsproplem6  28007  addsuniflem  28034  negsproplem2  28061  negsproplem4  28063  negsproplem5  28064  negsproplem6  28065  negsunif  28087  mulsproplem5  28146  mulsproplem6  28147  mulsproplem7  28148  mulsproplem8  28149  mulsproplem12  28153  ssltmul1  28173  ssltmul2  28174  mulsuniflem  28175  precsexlem11  28241
  Copyright terms: Public domain W3C validator