| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltsepcd | Structured version Visualization version GIF version | ||
| Description: Two elements of separated sets obey less-than. Deduction form of ssltsepc 27734. (Contributed by Scott Fenton, 25-Sep-2024.) |
| Ref | Expression |
|---|---|
| ssltsepcd.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| ssltsepcd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| ssltsepcd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ssltsepcd | ⊢ (𝜑 → 𝑋 <s 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssltsepcd.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
| 2 | ssltsepcd.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 3 | ssltsepcd.3 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ssltsepc 27734 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 <s 𝑌) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝑋 <s 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5089 <s cslt 27579 <<s csslt 27720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-sslt 27721 |
| This theorem is referenced by: sslttr 27748 eqscut3 27765 cofsslt 27862 coinitsslt 27863 cofcutrtime 27871 addsproplem2 27913 addsproplem4 27915 addsproplem5 27916 addsproplem6 27917 addsuniflem 27944 negsproplem2 27971 negsproplem4 27973 negsproplem5 27974 negsproplem6 27975 negsunif 27997 mulsproplem5 28059 mulsproplem6 28060 mulsproplem7 28061 mulsproplem8 28062 mulsproplem12 28066 ssltmul1 28086 ssltmul2 28087 mulsuniflem 28088 precsexlem11 28155 twocut 28346 pw2cut2 28382 |
| Copyright terms: Public domain | W3C validator |