Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssltsepcd | Structured version Visualization version GIF version |
Description: Two elements of separated sets obey less than. Deduction form of ssltsepc 33642. (Contributed by Scott Fenton, 25-Sep-2024.) |
Ref | Expression |
---|---|
ssltsepcd.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
ssltsepcd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
ssltsepcd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
ssltsepcd | ⊢ (𝜑 → 𝑋 <s 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssltsepcd.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
2 | ssltsepcd.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
3 | ssltsepcd.3 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | ssltsepc 33642 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 <s 𝑌) | |
5 | 1, 2, 3, 4 | syl3anc 1372 | 1 ⊢ (𝜑 → 𝑋 <s 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2114 class class class wbr 5040 <s cslt 33499 <<s csslt 33630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pr 5306 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-ral 3059 df-rex 3060 df-v 3402 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-br 5041 df-opab 5103 df-xp 5541 df-sslt 33631 |
This theorem is referenced by: sslttr 33656 cofsslt 33743 coinitsslt 33744 cofcutrtime 33748 |
Copyright terms: Public domain | W3C validator |