| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltsepcd | Structured version Visualization version GIF version | ||
| Description: Two elements of separated sets obey less-than. Deduction form of ssltsepc 27705. (Contributed by Scott Fenton, 25-Sep-2024.) |
| Ref | Expression |
|---|---|
| ssltsepcd.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| ssltsepcd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| ssltsepcd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ssltsepcd | ⊢ (𝜑 → 𝑋 <s 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssltsepcd.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
| 2 | ssltsepcd.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 3 | ssltsepcd.3 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ssltsepc 27705 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 <s 𝑌) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝑋 <s 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 <s cslt 27552 <<s csslt 27692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-sslt 27693 |
| This theorem is referenced by: sslttr 27719 cofsslt 27826 coinitsslt 27827 cofcutrtime 27835 addsproplem2 27877 addsproplem4 27879 addsproplem5 27880 addsproplem6 27881 addsuniflem 27908 negsproplem2 27935 negsproplem4 27937 negsproplem5 27938 negsproplem6 27939 negsunif 27961 mulsproplem5 28023 mulsproplem6 28024 mulsproplem7 28025 mulsproplem8 28026 mulsproplem12 28030 ssltmul1 28050 ssltmul2 28051 mulsuniflem 28052 precsexlem11 28119 twocut 28309 |
| Copyright terms: Public domain | W3C validator |