MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltsepcd Structured version   Visualization version   GIF version

Theorem ssltsepcd 27713
Description: Two elements of separated sets obey less-than. Deduction form of ssltsepc 27712. (Contributed by Scott Fenton, 25-Sep-2024.)
Hypotheses
Ref Expression
ssltsepcd.1 (𝜑𝐴 <<s 𝐵)
ssltsepcd.2 (𝜑𝑋𝐴)
ssltsepcd.3 (𝜑𝑌𝐵)
Assertion
Ref Expression
ssltsepcd (𝜑𝑋 <s 𝑌)

Proof of Theorem ssltsepcd
StepHypRef Expression
1 ssltsepcd.1 . 2 (𝜑𝐴 <<s 𝐵)
2 ssltsepcd.2 . 2 (𝜑𝑋𝐴)
3 ssltsepcd.3 . 2 (𝜑𝑌𝐵)
4 ssltsepc 27712 . 2 ((𝐴 <<s 𝐵𝑋𝐴𝑌𝐵) → 𝑋 <s 𝑌)
51, 2, 3, 4syl3anc 1373 1 (𝜑𝑋 <s 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5110   <s cslt 27559   <<s csslt 27699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-sslt 27700
This theorem is referenced by:  sslttr  27726  cofsslt  27833  coinitsslt  27834  cofcutrtime  27842  addsproplem2  27884  addsproplem4  27886  addsproplem5  27887  addsproplem6  27888  addsuniflem  27915  negsproplem2  27942  negsproplem4  27944  negsproplem5  27945  negsproplem6  27946  negsunif  27968  mulsproplem5  28030  mulsproplem6  28031  mulsproplem7  28032  mulsproplem8  28033  mulsproplem12  28037  ssltmul1  28057  ssltmul2  28058  mulsuniflem  28059  precsexlem11  28126  twocut  28316
  Copyright terms: Public domain W3C validator