| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltsepcd | Structured version Visualization version GIF version | ||
| Description: Two elements of separated sets obey less-than. Deduction form of ssltsepc 27712. (Contributed by Scott Fenton, 25-Sep-2024.) |
| Ref | Expression |
|---|---|
| ssltsepcd.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| ssltsepcd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| ssltsepcd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ssltsepcd | ⊢ (𝜑 → 𝑋 <s 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssltsepcd.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
| 2 | ssltsepcd.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 3 | ssltsepcd.3 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ssltsepc 27712 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 <s 𝑌) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝑋 <s 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5110 <s cslt 27559 <<s csslt 27699 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-sslt 27700 |
| This theorem is referenced by: sslttr 27726 cofsslt 27833 coinitsslt 27834 cofcutrtime 27842 addsproplem2 27884 addsproplem4 27886 addsproplem5 27887 addsproplem6 27888 addsuniflem 27915 negsproplem2 27942 negsproplem4 27944 negsproplem5 27945 negsproplem6 27946 negsunif 27968 mulsproplem5 28030 mulsproplem6 28031 mulsproplem7 28032 mulsproplem8 28033 mulsproplem12 28037 ssltmul1 28057 ssltmul2 28058 mulsuniflem 28059 precsexlem11 28126 twocut 28316 |
| Copyright terms: Public domain | W3C validator |