![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssltsepcd | Structured version Visualization version GIF version |
Description: Two elements of separated sets obey less-than. Deduction form of ssltsepc 27856. (Contributed by Scott Fenton, 25-Sep-2024.) |
Ref | Expression |
---|---|
ssltsepcd.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
ssltsepcd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
ssltsepcd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
ssltsepcd | ⊢ (𝜑 → 𝑋 <s 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssltsepcd.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
2 | ssltsepcd.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
3 | ssltsepcd.3 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | ssltsepc 27856 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 <s 𝑌) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | 1 ⊢ (𝜑 → 𝑋 <s 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5166 <s cslt 27703 <<s csslt 27843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-sslt 27844 |
This theorem is referenced by: sslttr 27870 cofsslt 27970 coinitsslt 27971 cofcutrtime 27979 addsproplem2 28021 addsproplem4 28023 addsproplem5 28024 addsproplem6 28025 addsuniflem 28052 negsproplem2 28079 negsproplem4 28081 negsproplem5 28082 negsproplem6 28083 negsunif 28105 mulsproplem5 28164 mulsproplem6 28165 mulsproplem7 28166 mulsproplem8 28167 mulsproplem12 28171 ssltmul1 28191 ssltmul2 28192 mulsuniflem 28193 precsexlem11 28259 |
Copyright terms: Public domain | W3C validator |