| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltsepcd | Structured version Visualization version GIF version | ||
| Description: Two elements of separated sets obey less-than. Deduction form of ssltsepc 27838. (Contributed by Scott Fenton, 25-Sep-2024.) |
| Ref | Expression |
|---|---|
| ssltsepcd.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| ssltsepcd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| ssltsepcd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ssltsepcd | ⊢ (𝜑 → 𝑋 <s 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssltsepcd.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
| 2 | ssltsepcd.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 3 | ssltsepcd.3 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ssltsepc 27838 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 <s 𝑌) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝑋 <s 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5143 <s cslt 27685 <<s csslt 27825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-sslt 27826 |
| This theorem is referenced by: sslttr 27852 cofsslt 27952 coinitsslt 27953 cofcutrtime 27961 addsproplem2 28003 addsproplem4 28005 addsproplem5 28006 addsproplem6 28007 addsuniflem 28034 negsproplem2 28061 negsproplem4 28063 negsproplem5 28064 negsproplem6 28065 negsunif 28087 mulsproplem5 28146 mulsproplem6 28147 mulsproplem7 28148 mulsproplem8 28149 mulsproplem12 28153 ssltmul1 28173 ssltmul2 28174 mulsuniflem 28175 precsexlem11 28241 |
| Copyright terms: Public domain | W3C validator |