MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltsepcd Structured version   Visualization version   GIF version

Theorem ssltsepcd 27857
Description: Two elements of separated sets obey less-than. Deduction form of ssltsepc 27856. (Contributed by Scott Fenton, 25-Sep-2024.)
Hypotheses
Ref Expression
ssltsepcd.1 (𝜑𝐴 <<s 𝐵)
ssltsepcd.2 (𝜑𝑋𝐴)
ssltsepcd.3 (𝜑𝑌𝐵)
Assertion
Ref Expression
ssltsepcd (𝜑𝑋 <s 𝑌)

Proof of Theorem ssltsepcd
StepHypRef Expression
1 ssltsepcd.1 . 2 (𝜑𝐴 <<s 𝐵)
2 ssltsepcd.2 . 2 (𝜑𝑋𝐴)
3 ssltsepcd.3 . 2 (𝜑𝑌𝐵)
4 ssltsepc 27856 . 2 ((𝐴 <<s 𝐵𝑋𝐴𝑌𝐵) → 𝑋 <s 𝑌)
51, 2, 3, 4syl3anc 1371 1 (𝜑𝑋 <s 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5166   <s cslt 27703   <<s csslt 27843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-sslt 27844
This theorem is referenced by:  sslttr  27870  cofsslt  27970  coinitsslt  27971  cofcutrtime  27979  addsproplem2  28021  addsproplem4  28023  addsproplem5  28024  addsproplem6  28025  addsuniflem  28052  negsproplem2  28079  negsproplem4  28081  negsproplem5  28082  negsproplem6  28083  negsunif  28105  mulsproplem5  28164  mulsproplem6  28165  mulsproplem7  28166  mulsproplem8  28167  mulsproplem12  28171  ssltmul1  28191  ssltmul2  28192  mulsuniflem  28193  precsexlem11  28259
  Copyright terms: Public domain W3C validator