Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssltsepcd | Structured version Visualization version GIF version |
Description: Two elements of separated sets obey less than. Deduction form of ssltsepc 33987. (Contributed by Scott Fenton, 25-Sep-2024.) |
Ref | Expression |
---|---|
ssltsepcd.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
ssltsepcd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
ssltsepcd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
ssltsepcd | ⊢ (𝜑 → 𝑋 <s 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssltsepcd.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
2 | ssltsepcd.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
3 | ssltsepcd.3 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | ssltsepc 33987 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 <s 𝑌) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ (𝜑 → 𝑋 <s 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5074 <s cslt 33844 <<s csslt 33975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-sslt 33976 |
This theorem is referenced by: sslttr 34001 cofsslt 34088 coinitsslt 34089 cofcutrtime 34093 |
Copyright terms: Public domain | W3C validator |