MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunfunc Structured version   Visualization version   GIF version

Theorem wunfunc 17530
Description: A weak universe is closed under the functor set operation. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 13-Oct-2024.)
Hypotheses
Ref Expression
wunfunc.1 (𝜑𝑈 ∈ WUni)
wunfunc.2 (𝜑𝐶𝑈)
wunfunc.3 (𝜑𝐷𝑈)
Assertion
Ref Expression
wunfunc (𝜑 → (𝐶 Func 𝐷) ∈ 𝑈)

Proof of Theorem wunfunc
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wunfunc.1 . 2 (𝜑𝑈 ∈ WUni)
2 baseid 16843 . . . . 5 Base = Slot (Base‘ndx)
3 wunfunc.3 . . . . 5 (𝜑𝐷𝑈)
42, 1, 3wunstr 16817 . . . 4 (𝜑 → (Base‘𝐷) ∈ 𝑈)
5 wunfunc.2 . . . . 5 (𝜑𝐶𝑈)
62, 1, 5wunstr 16817 . . . 4 (𝜑 → (Base‘𝐶) ∈ 𝑈)
71, 4, 6wunmap 10413 . . 3 (𝜑 → ((Base‘𝐷) ↑m (Base‘𝐶)) ∈ 𝑈)
8 homid 17041 . . . . . . . . 9 Hom = Slot (Hom ‘ndx)
98, 1, 5wunstr 16817 . . . . . . . 8 (𝜑 → (Hom ‘𝐶) ∈ 𝑈)
101, 9wunrn 10416 . . . . . . 7 (𝜑 → ran (Hom ‘𝐶) ∈ 𝑈)
111, 10wununi 10393 . . . . . 6 (𝜑 ran (Hom ‘𝐶) ∈ 𝑈)
128, 1, 3wunstr 16817 . . . . . . . 8 (𝜑 → (Hom ‘𝐷) ∈ 𝑈)
131, 12wunrn 10416 . . . . . . 7 (𝜑 → ran (Hom ‘𝐷) ∈ 𝑈)
141, 13wununi 10393 . . . . . 6 (𝜑 ran (Hom ‘𝐷) ∈ 𝑈)
151, 11, 14wunxp 10411 . . . . 5 (𝜑 → ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ∈ 𝑈)
161, 15wunpw 10394 . . . 4 (𝜑 → 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ∈ 𝑈)
171, 6, 6wunxp 10411 . . . 4 (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) ∈ 𝑈)
181, 16, 17wunmap 10413 . . 3 (𝜑 → (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶))) ∈ 𝑈)
191, 7, 18wunxp 10411 . 2 (𝜑 → (((Base‘𝐷) ↑m (Base‘𝐶)) × (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶)))) ∈ 𝑈)
20 relfunc 17493 . . . 4 Rel (𝐶 Func 𝐷)
2120a1i 11 . . 3 (𝜑 → Rel (𝐶 Func 𝐷))
22 df-br 5071 . . . 4 (𝑓(𝐶 Func 𝐷)𝑔 ↔ ⟨𝑓, 𝑔⟩ ∈ (𝐶 Func 𝐷))
23 eqid 2738 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
24 eqid 2738 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
25 simpr 484 . . . . . . . 8 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → 𝑓(𝐶 Func 𝐷)𝑔)
2623, 24, 25funcf1 17497 . . . . . . 7 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → 𝑓:(Base‘𝐶)⟶(Base‘𝐷))
27 fvex 6769 . . . . . . . 8 (Base‘𝐷) ∈ V
28 fvex 6769 . . . . . . . 8 (Base‘𝐶) ∈ V
2927, 28elmap 8617 . . . . . . 7 (𝑓 ∈ ((Base‘𝐷) ↑m (Base‘𝐶)) ↔ 𝑓:(Base‘𝐶)⟶(Base‘𝐷))
3026, 29sylibr 233 . . . . . 6 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → 𝑓 ∈ ((Base‘𝐷) ↑m (Base‘𝐶)))
31 mapsspw 8624 . . . . . . . . . . 11 (((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ⊆ 𝒫 (((Hom ‘𝐶)‘𝑧) × ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))))
32 fvssunirn 6785 . . . . . . . . . . . . 13 ((Hom ‘𝐶)‘𝑧) ⊆ ran (Hom ‘𝐶)
33 ovssunirn 7291 . . . . . . . . . . . . 13 ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ⊆ ran (Hom ‘𝐷)
34 xpss12 5595 . . . . . . . . . . . . 13 ((((Hom ‘𝐶)‘𝑧) ⊆ ran (Hom ‘𝐶) ∧ ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ⊆ ran (Hom ‘𝐷)) → (((Hom ‘𝐶)‘𝑧) × ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧)))) ⊆ ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)))
3532, 33, 34mp2an 688 . . . . . . . . . . . 12 (((Hom ‘𝐶)‘𝑧) × ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧)))) ⊆ ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷))
3635sspwi 4544 . . . . . . . . . . 11 𝒫 (((Hom ‘𝐶)‘𝑧) × ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧)))) ⊆ 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷))
3731, 36sstri 3926 . . . . . . . . . 10 (((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ⊆ 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷))
3837rgenw 3075 . . . . . . . . 9 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ⊆ 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷))
39 ss2ixp 8656 . . . . . . . . 9 (∀𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ⊆ 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) → X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ⊆ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)))
4038, 39ax-mp 5 . . . . . . . 8 X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ⊆ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷))
4128, 28xpex 7581 . . . . . . . . 9 ((Base‘𝐶) × (Base‘𝐶)) ∈ V
42 fvex 6769 . . . . . . . . . . . . 13 (Hom ‘𝐶) ∈ V
4342rnex 7733 . . . . . . . . . . . 12 ran (Hom ‘𝐶) ∈ V
4443uniex 7572 . . . . . . . . . . 11 ran (Hom ‘𝐶) ∈ V
45 fvex 6769 . . . . . . . . . . . . 13 (Hom ‘𝐷) ∈ V
4645rnex 7733 . . . . . . . . . . . 12 ran (Hom ‘𝐷) ∈ V
4746uniex 7572 . . . . . . . . . . 11 ran (Hom ‘𝐷) ∈ V
4844, 47xpex 7581 . . . . . . . . . 10 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ∈ V
4948pwex 5298 . . . . . . . . 9 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ∈ V
5041, 49ixpconst 8653 . . . . . . . 8 X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) = (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶)))
5140, 50sseqtri 3953 . . . . . . 7 X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ⊆ (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶)))
52 eqid 2738 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
53 eqid 2738 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
5423, 52, 53, 25funcixp 17498 . . . . . . 7 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → 𝑔X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)))
5551, 54sselid 3915 . . . . . 6 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → 𝑔 ∈ (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶))))
5630, 55opelxpd 5618 . . . . 5 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → ⟨𝑓, 𝑔⟩ ∈ (((Base‘𝐷) ↑m (Base‘𝐶)) × (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶)))))
5756ex 412 . . . 4 (𝜑 → (𝑓(𝐶 Func 𝐷)𝑔 → ⟨𝑓, 𝑔⟩ ∈ (((Base‘𝐷) ↑m (Base‘𝐶)) × (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶))))))
5822, 57syl5bir 242 . . 3 (𝜑 → (⟨𝑓, 𝑔⟩ ∈ (𝐶 Func 𝐷) → ⟨𝑓, 𝑔⟩ ∈ (((Base‘𝐷) ↑m (Base‘𝐶)) × (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶))))))
5921, 58relssdv 5687 . 2 (𝜑 → (𝐶 Func 𝐷) ⊆ (((Base‘𝐷) ↑m (Base‘𝐶)) × (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶)))))
601, 19, 59wunss 10399 1 (𝜑 → (𝐶 Func 𝐷) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3063  wss 3883  𝒫 cpw 4530  cop 4564   cuni 4836   class class class wbr 5070   × cxp 5578  ran crn 5581  Rel wrel 5585  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  m cmap 8573  Xcixp 8643  WUnicwun 10387  ndxcnx 16822  Basecbs 16840  Hom chom 16899   Func cfunc 17485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-wun 10389  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-dec 12367  df-slot 16811  df-ndx 16823  df-base 16841  df-hom 16912  df-func 17489
This theorem is referenced by:  wunnat  17588  wunnatOLD  17589  catcfuccl  17750  catcfucclOLD  17751
  Copyright terms: Public domain W3C validator