MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunfunc Structured version   Visualization version   GIF version

Theorem wunfunc 17853
Description: A weak universe is closed under the functor set operation. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 13-Oct-2024.)
Hypotheses
Ref Expression
wunfunc.1 (πœ‘ β†’ π‘ˆ ∈ WUni)
wunfunc.2 (πœ‘ β†’ 𝐢 ∈ π‘ˆ)
wunfunc.3 (πœ‘ β†’ 𝐷 ∈ π‘ˆ)
Assertion
Ref Expression
wunfunc (πœ‘ β†’ (𝐢 Func 𝐷) ∈ π‘ˆ)

Proof of Theorem wunfunc
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wunfunc.1 . 2 (πœ‘ β†’ π‘ˆ ∈ WUni)
2 baseid 17151 . . . . 5 Base = Slot (Baseβ€˜ndx)
3 wunfunc.3 . . . . 5 (πœ‘ β†’ 𝐷 ∈ π‘ˆ)
42, 1, 3wunstr 17125 . . . 4 (πœ‘ β†’ (Baseβ€˜π·) ∈ π‘ˆ)
5 wunfunc.2 . . . . 5 (πœ‘ β†’ 𝐢 ∈ π‘ˆ)
62, 1, 5wunstr 17125 . . . 4 (πœ‘ β†’ (Baseβ€˜πΆ) ∈ π‘ˆ)
71, 4, 6wunmap 10723 . . 3 (πœ‘ β†’ ((Baseβ€˜π·) ↑m (Baseβ€˜πΆ)) ∈ π‘ˆ)
8 homid 17361 . . . . . . . . 9 Hom = Slot (Hom β€˜ndx)
98, 1, 5wunstr 17125 . . . . . . . 8 (πœ‘ β†’ (Hom β€˜πΆ) ∈ π‘ˆ)
101, 9wunrn 10726 . . . . . . 7 (πœ‘ β†’ ran (Hom β€˜πΆ) ∈ π‘ˆ)
111, 10wununi 10703 . . . . . 6 (πœ‘ β†’ βˆͺ ran (Hom β€˜πΆ) ∈ π‘ˆ)
128, 1, 3wunstr 17125 . . . . . . . 8 (πœ‘ β†’ (Hom β€˜π·) ∈ π‘ˆ)
131, 12wunrn 10726 . . . . . . 7 (πœ‘ β†’ ran (Hom β€˜π·) ∈ π‘ˆ)
141, 13wununi 10703 . . . . . 6 (πœ‘ β†’ βˆͺ ran (Hom β€˜π·) ∈ π‘ˆ)
151, 11, 14wunxp 10721 . . . . 5 (πœ‘ β†’ (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·)) ∈ π‘ˆ)
161, 15wunpw 10704 . . . 4 (πœ‘ β†’ 𝒫 (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·)) ∈ π‘ˆ)
171, 6, 6wunxp 10721 . . . 4 (πœ‘ β†’ ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ)) ∈ π‘ˆ)
181, 16, 17wunmap 10723 . . 3 (πœ‘ β†’ (𝒫 (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·)) ↑m ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ))) ∈ π‘ˆ)
191, 7, 18wunxp 10721 . 2 (πœ‘ β†’ (((Baseβ€˜π·) ↑m (Baseβ€˜πΆ)) Γ— (𝒫 (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·)) ↑m ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ)))) ∈ π‘ˆ)
20 relfunc 17816 . . . 4 Rel (𝐢 Func 𝐷)
2120a1i 11 . . 3 (πœ‘ β†’ Rel (𝐢 Func 𝐷))
22 df-br 5149 . . . 4 (𝑓(𝐢 Func 𝐷)𝑔 ↔ βŸ¨π‘“, π‘”βŸ© ∈ (𝐢 Func 𝐷))
23 eqid 2732 . . . . . . . 8 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
24 eqid 2732 . . . . . . . 8 (Baseβ€˜π·) = (Baseβ€˜π·)
25 simpr 485 . . . . . . . 8 ((πœ‘ ∧ 𝑓(𝐢 Func 𝐷)𝑔) β†’ 𝑓(𝐢 Func 𝐷)𝑔)
2623, 24, 25funcf1 17820 . . . . . . 7 ((πœ‘ ∧ 𝑓(𝐢 Func 𝐷)𝑔) β†’ 𝑓:(Baseβ€˜πΆ)⟢(Baseβ€˜π·))
27 fvex 6904 . . . . . . . 8 (Baseβ€˜π·) ∈ V
28 fvex 6904 . . . . . . . 8 (Baseβ€˜πΆ) ∈ V
2927, 28elmap 8867 . . . . . . 7 (𝑓 ∈ ((Baseβ€˜π·) ↑m (Baseβ€˜πΆ)) ↔ 𝑓:(Baseβ€˜πΆ)⟢(Baseβ€˜π·))
3026, 29sylibr 233 . . . . . 6 ((πœ‘ ∧ 𝑓(𝐢 Func 𝐷)𝑔) β†’ 𝑓 ∈ ((Baseβ€˜π·) ↑m (Baseβ€˜πΆ)))
31 mapsspw 8874 . . . . . . . . . . 11 (((π‘“β€˜(1st β€˜π‘§))(Hom β€˜π·)(π‘“β€˜(2nd β€˜π‘§))) ↑m ((Hom β€˜πΆ)β€˜π‘§)) βŠ† 𝒫 (((Hom β€˜πΆ)β€˜π‘§) Γ— ((π‘“β€˜(1st β€˜π‘§))(Hom β€˜π·)(π‘“β€˜(2nd β€˜π‘§))))
32 fvssunirn 6924 . . . . . . . . . . . . 13 ((Hom β€˜πΆ)β€˜π‘§) βŠ† βˆͺ ran (Hom β€˜πΆ)
33 ovssunirn 7447 . . . . . . . . . . . . 13 ((π‘“β€˜(1st β€˜π‘§))(Hom β€˜π·)(π‘“β€˜(2nd β€˜π‘§))) βŠ† βˆͺ ran (Hom β€˜π·)
34 xpss12 5691 . . . . . . . . . . . . 13 ((((Hom β€˜πΆ)β€˜π‘§) βŠ† βˆͺ ran (Hom β€˜πΆ) ∧ ((π‘“β€˜(1st β€˜π‘§))(Hom β€˜π·)(π‘“β€˜(2nd β€˜π‘§))) βŠ† βˆͺ ran (Hom β€˜π·)) β†’ (((Hom β€˜πΆ)β€˜π‘§) Γ— ((π‘“β€˜(1st β€˜π‘§))(Hom β€˜π·)(π‘“β€˜(2nd β€˜π‘§)))) βŠ† (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·)))
3532, 33, 34mp2an 690 . . . . . . . . . . . 12 (((Hom β€˜πΆ)β€˜π‘§) Γ— ((π‘“β€˜(1st β€˜π‘§))(Hom β€˜π·)(π‘“β€˜(2nd β€˜π‘§)))) βŠ† (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·))
3635sspwi 4614 . . . . . . . . . . 11 𝒫 (((Hom β€˜πΆ)β€˜π‘§) Γ— ((π‘“β€˜(1st β€˜π‘§))(Hom β€˜π·)(π‘“β€˜(2nd β€˜π‘§)))) βŠ† 𝒫 (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·))
3731, 36sstri 3991 . . . . . . . . . 10 (((π‘“β€˜(1st β€˜π‘§))(Hom β€˜π·)(π‘“β€˜(2nd β€˜π‘§))) ↑m ((Hom β€˜πΆ)β€˜π‘§)) βŠ† 𝒫 (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·))
3837rgenw 3065 . . . . . . . . 9 βˆ€π‘§ ∈ ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ))(((π‘“β€˜(1st β€˜π‘§))(Hom β€˜π·)(π‘“β€˜(2nd β€˜π‘§))) ↑m ((Hom β€˜πΆ)β€˜π‘§)) βŠ† 𝒫 (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·))
39 ss2ixp 8906 . . . . . . . . 9 (βˆ€π‘§ ∈ ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ))(((π‘“β€˜(1st β€˜π‘§))(Hom β€˜π·)(π‘“β€˜(2nd β€˜π‘§))) ↑m ((Hom β€˜πΆ)β€˜π‘§)) βŠ† 𝒫 (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·)) β†’ X𝑧 ∈ ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ))(((π‘“β€˜(1st β€˜π‘§))(Hom β€˜π·)(π‘“β€˜(2nd β€˜π‘§))) ↑m ((Hom β€˜πΆ)β€˜π‘§)) βŠ† X𝑧 ∈ ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ))𝒫 (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·)))
4038, 39ax-mp 5 . . . . . . . 8 X𝑧 ∈ ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ))(((π‘“β€˜(1st β€˜π‘§))(Hom β€˜π·)(π‘“β€˜(2nd β€˜π‘§))) ↑m ((Hom β€˜πΆ)β€˜π‘§)) βŠ† X𝑧 ∈ ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ))𝒫 (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·))
4128, 28xpex 7742 . . . . . . . . 9 ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ)) ∈ V
42 fvex 6904 . . . . . . . . . . . . 13 (Hom β€˜πΆ) ∈ V
4342rnex 7905 . . . . . . . . . . . 12 ran (Hom β€˜πΆ) ∈ V
4443uniex 7733 . . . . . . . . . . 11 βˆͺ ran (Hom β€˜πΆ) ∈ V
45 fvex 6904 . . . . . . . . . . . . 13 (Hom β€˜π·) ∈ V
4645rnex 7905 . . . . . . . . . . . 12 ran (Hom β€˜π·) ∈ V
4746uniex 7733 . . . . . . . . . . 11 βˆͺ ran (Hom β€˜π·) ∈ V
4844, 47xpex 7742 . . . . . . . . . 10 (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·)) ∈ V
4948pwex 5378 . . . . . . . . 9 𝒫 (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·)) ∈ V
5041, 49ixpconst 8903 . . . . . . . 8 X𝑧 ∈ ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ))𝒫 (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·)) = (𝒫 (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·)) ↑m ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ)))
5140, 50sseqtri 4018 . . . . . . 7 X𝑧 ∈ ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ))(((π‘“β€˜(1st β€˜π‘§))(Hom β€˜π·)(π‘“β€˜(2nd β€˜π‘§))) ↑m ((Hom β€˜πΆ)β€˜π‘§)) βŠ† (𝒫 (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·)) ↑m ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ)))
52 eqid 2732 . . . . . . . 8 (Hom β€˜πΆ) = (Hom β€˜πΆ)
53 eqid 2732 . . . . . . . 8 (Hom β€˜π·) = (Hom β€˜π·)
5423, 52, 53, 25funcixp 17821 . . . . . . 7 ((πœ‘ ∧ 𝑓(𝐢 Func 𝐷)𝑔) β†’ 𝑔 ∈ X𝑧 ∈ ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ))(((π‘“β€˜(1st β€˜π‘§))(Hom β€˜π·)(π‘“β€˜(2nd β€˜π‘§))) ↑m ((Hom β€˜πΆ)β€˜π‘§)))
5551, 54sselid 3980 . . . . . 6 ((πœ‘ ∧ 𝑓(𝐢 Func 𝐷)𝑔) β†’ 𝑔 ∈ (𝒫 (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·)) ↑m ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ))))
5630, 55opelxpd 5715 . . . . 5 ((πœ‘ ∧ 𝑓(𝐢 Func 𝐷)𝑔) β†’ βŸ¨π‘“, π‘”βŸ© ∈ (((Baseβ€˜π·) ↑m (Baseβ€˜πΆ)) Γ— (𝒫 (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·)) ↑m ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ)))))
5756ex 413 . . . 4 (πœ‘ β†’ (𝑓(𝐢 Func 𝐷)𝑔 β†’ βŸ¨π‘“, π‘”βŸ© ∈ (((Baseβ€˜π·) ↑m (Baseβ€˜πΆ)) Γ— (𝒫 (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·)) ↑m ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ))))))
5822, 57biimtrrid 242 . . 3 (πœ‘ β†’ (βŸ¨π‘“, π‘”βŸ© ∈ (𝐢 Func 𝐷) β†’ βŸ¨π‘“, π‘”βŸ© ∈ (((Baseβ€˜π·) ↑m (Baseβ€˜πΆ)) Γ— (𝒫 (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·)) ↑m ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ))))))
5921, 58relssdv 5788 . 2 (πœ‘ β†’ (𝐢 Func 𝐷) βŠ† (((Baseβ€˜π·) ↑m (Baseβ€˜πΆ)) Γ— (𝒫 (βˆͺ ran (Hom β€˜πΆ) Γ— βˆͺ ran (Hom β€˜π·)) ↑m ((Baseβ€˜πΆ) Γ— (Baseβ€˜πΆ)))))
601, 19, 59wunss 10709 1 (πœ‘ β†’ (𝐢 Func 𝐷) ∈ π‘ˆ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∈ wcel 2106  βˆ€wral 3061   βŠ† wss 3948  π’« cpw 4602  βŸ¨cop 4634  βˆͺ cuni 4908   class class class wbr 5148   Γ— cxp 5674  ran crn 5677  Rel wrel 5681  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7411  1st c1st 7975  2nd c2nd 7976   ↑m cmap 8822  Xcixp 8893  WUnicwun 10697  ndxcnx 17130  Basecbs 17148  Hom chom 17212   Func cfunc 17808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-wun 10699  df-pnf 11254  df-mnf 11255  df-ltxr 11257  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-dec 12682  df-slot 17119  df-ndx 17131  df-base 17149  df-hom 17225  df-func 17812
This theorem is referenced by:  wunnat  17911  wunnatOLD  17912  catcfuccl  18073  catcfucclOLD  18074
  Copyright terms: Public domain W3C validator