MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsres Structured version   Visualization version   GIF version

Theorem tsmsres 23295
Description: Extend an infinite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 18-Sep-2015.) (Revised by AV, 25-Jul-2019.)
Hypotheses
Ref Expression
tsmsres.b 𝐵 = (Base‘𝐺)
tsmsres.z 0 = (0g𝐺)
tsmsres.1 (𝜑𝐺 ∈ CMnd)
tsmsres.2 (𝜑𝐺 ∈ TopSp)
tsmsres.a (𝜑𝐴𝑉)
tsmsres.f (𝜑𝐹:𝐴𝐵)
tsmsres.s (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊)
Assertion
Ref Expression
tsmsres (𝜑 → (𝐺 tsums (𝐹𝑊)) = (𝐺 tsums 𝐹))

Proof of Theorem tsmsres
Dummy variables 𝑎 𝑏 𝑢 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4162 . . . . . . . . . . . 12 (𝐴𝑊) ⊆ 𝐴
21sspwi 4547 . . . . . . . . . . 11 𝒫 (𝐴𝑊) ⊆ 𝒫 𝐴
3 ssrin 4167 . . . . . . . . . . 11 (𝒫 (𝐴𝑊) ⊆ 𝒫 𝐴 → (𝒫 (𝐴𝑊) ∩ Fin) ⊆ (𝒫 𝐴 ∩ Fin))
42, 3ax-mp 5 . . . . . . . . . 10 (𝒫 (𝐴𝑊) ∩ Fin) ⊆ (𝒫 𝐴 ∩ Fin)
5 simpr 485 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin))
64, 5sselid 3919 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin))
7 elfpw 9121 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑧𝐴𝑧 ∈ Fin))
87simplbi 498 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧𝐴)
98adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧𝐴)
109ssrind 4169 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑊) ⊆ (𝐴𝑊))
11 elinel2 4130 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ∈ Fin)
1211adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧 ∈ Fin)
13 inss1 4162 . . . . . . . . . . . . . 14 (𝑧𝑊) ⊆ 𝑧
14 ssfi 8956 . . . . . . . . . . . . . 14 ((𝑧 ∈ Fin ∧ (𝑧𝑊) ⊆ 𝑧) → (𝑧𝑊) ∈ Fin)
1512, 13, 14sylancl 586 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑊) ∈ Fin)
16 elfpw 9121 . . . . . . . . . . . . 13 ((𝑧𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin) ↔ ((𝑧𝑊) ⊆ (𝐴𝑊) ∧ (𝑧𝑊) ∈ Fin))
1710, 15, 16sylanbrc 583 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin))
18 sseq2 3947 . . . . . . . . . . . . . . 15 (𝑏 = (𝑧𝑊) → (𝑎𝑏𝑎 ⊆ (𝑧𝑊)))
19 ssin 4164 . . . . . . . . . . . . . . 15 ((𝑎𝑧𝑎𝑊) ↔ 𝑎 ⊆ (𝑧𝑊))
2018, 19bitr4di 289 . . . . . . . . . . . . . 14 (𝑏 = (𝑧𝑊) → (𝑎𝑏 ↔ (𝑎𝑧𝑎𝑊)))
21 reseq2 5886 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑧𝑊) → ((𝐹𝑊) ↾ 𝑏) = ((𝐹𝑊) ↾ (𝑧𝑊)))
22 inss2 4163 . . . . . . . . . . . . . . . . . 18 (𝑧𝑊) ⊆ 𝑊
23 resabs1 5921 . . . . . . . . . . . . . . . . . 18 ((𝑧𝑊) ⊆ 𝑊 → ((𝐹𝑊) ↾ (𝑧𝑊)) = (𝐹 ↾ (𝑧𝑊)))
2422, 23ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝐹𝑊) ↾ (𝑧𝑊)) = (𝐹 ↾ (𝑧𝑊))
2521, 24eqtrdi 2794 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑧𝑊) → ((𝐹𝑊) ↾ 𝑏) = (𝐹 ↾ (𝑧𝑊)))
2625oveq2d 7291 . . . . . . . . . . . . . . 15 (𝑏 = (𝑧𝑊) → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) = (𝐺 Σg (𝐹 ↾ (𝑧𝑊))))
2726eleq1d 2823 . . . . . . . . . . . . . 14 (𝑏 = (𝑧𝑊) → ((𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢))
2820, 27imbi12d 345 . . . . . . . . . . . . 13 (𝑏 = (𝑧𝑊) → ((𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) ↔ ((𝑎𝑧𝑎𝑊) → (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢)))
2928rspcv 3557 . . . . . . . . . . . 12 ((𝑧𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ((𝑎𝑧𝑎𝑊) → (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢)))
3017, 29syl 17 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ((𝑎𝑧𝑎𝑊) → (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢)))
31 elfpw 9121 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ↔ (𝑎 ⊆ (𝐴𝑊) ∧ 𝑎 ∈ Fin))
3231simplbi 498 . . . . . . . . . . . . . . 15 (𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin) → 𝑎 ⊆ (𝐴𝑊))
3332ad2antlr 724 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ⊆ (𝐴𝑊))
34 inss2 4163 . . . . . . . . . . . . . 14 (𝐴𝑊) ⊆ 𝑊
3533, 34sstrdi 3933 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎𝑊)
3635biantrud 532 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑎𝑧 ↔ (𝑎𝑧𝑎𝑊)))
37 tsmsres.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝐺)
38 tsmsres.z . . . . . . . . . . . . . . 15 0 = (0g𝐺)
39 tsmsres.1 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ CMnd)
4039ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
41 tsmsres.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐴𝐵)
4241ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐴𝐵)
4342, 9fssresd 6641 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧):𝑧𝐵)
44 tsmsres.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴𝑉)
4541, 44fexd 7103 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ V)
4645ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹 ∈ V)
4738fvexi 6788 . . . . . . . . . . . . . . . . 17 0 ∈ V
48 ressuppss 7999 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ V ∧ 0 ∈ V) → ((𝐹𝑧) supp 0 ) ⊆ (𝐹 supp 0 ))
4946, 47, 48sylancl 586 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹𝑧) supp 0 ) ⊆ (𝐹 supp 0 ))
50 tsmsres.s . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊)
5150ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ⊆ 𝑊)
5249, 51sstrd 3931 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹𝑧) supp 0 ) ⊆ 𝑊)
5347a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ∈ V)
5443, 12, 53fdmfifsupp 9138 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧) finSupp 0 )
5537, 38, 40, 12, 43, 52, 54gsumres 19514 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg ((𝐹𝑧) ↾ 𝑊)) = (𝐺 Σg (𝐹𝑧)))
56 resres 5904 . . . . . . . . . . . . . . 15 ((𝐹𝑧) ↾ 𝑊) = (𝐹 ↾ (𝑧𝑊))
5756oveq2i 7286 . . . . . . . . . . . . . 14 (𝐺 Σg ((𝐹𝑧) ↾ 𝑊)) = (𝐺 Σg (𝐹 ↾ (𝑧𝑊)))
5855, 57eqtr3di 2793 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑧𝑊))))
5958eleq1d 2823 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢))
6036, 59imbi12d 345 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ((𝑎𝑧𝑎𝑊) → (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢)))
6130, 60sylibrd 258 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → (𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
6261ralrimdva 3106 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
63 sseq1 3946 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝑦𝑧𝑎𝑧))
6463rspceaimv 3565 . . . . . . . . 9 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
656, 62, 64syl6an 681 . . . . . . . 8 ((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
6665rexlimdva 3213 . . . . . . 7 (𝜑 → (∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
67 elfpw 9121 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦𝐴𝑦 ∈ Fin))
6867simplbi 498 . . . . . . . . . . . 12 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
6968adantl 482 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
7069ssrind 4169 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦𝑊) ⊆ (𝐴𝑊))
71 elinel2 4130 . . . . . . . . . . . 12 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
7271adantl 482 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
73 inss1 4162 . . . . . . . . . . 11 (𝑦𝑊) ⊆ 𝑦
74 ssfi 8956 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ (𝑦𝑊) ⊆ 𝑦) → (𝑦𝑊) ∈ Fin)
7572, 73, 74sylancl 586 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦𝑊) ∈ Fin)
76 elfpw 9121 . . . . . . . . . 10 ((𝑦𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin) ↔ ((𝑦𝑊) ⊆ (𝐴𝑊) ∧ (𝑦𝑊) ∈ Fin))
7770, 75, 76sylanbrc 583 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin))
7868ad2antlr 724 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑦𝐴)
79 elfpw 9121 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ↔ (𝑏 ⊆ (𝐴𝑊) ∧ 𝑏 ∈ Fin))
8079simplbi 498 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) → 𝑏 ⊆ (𝐴𝑊))
8180adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑏 ⊆ (𝐴𝑊))
8281, 1sstrdi 3933 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑏𝐴)
8378, 82unssd 4120 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (𝑦𝑏) ⊆ 𝐴)
84 elinel2 4130 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) → 𝑏 ∈ Fin)
85 unfi 8955 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ 𝑏 ∈ Fin) → (𝑦𝑏) ∈ Fin)
8672, 84, 85syl2an 596 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (𝑦𝑏) ∈ Fin)
87 elfpw 9121 . . . . . . . . . . . . 13 ((𝑦𝑏) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝑦𝑏) ⊆ 𝐴 ∧ (𝑦𝑏) ∈ Fin))
8883, 86, 87sylanbrc 583 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (𝑦𝑏) ∈ (𝒫 𝐴 ∩ Fin))
89 ssun1 4106 . . . . . . . . . . . . . . . 16 𝑦 ⊆ (𝑦𝑏)
90 id 22 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦𝑏) → 𝑧 = (𝑦𝑏))
9189, 90sseqtrrid 3974 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦𝑏) → 𝑦𝑧)
92 pm5.5 362 . . . . . . . . . . . . . . 15 (𝑦𝑧 → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
9391, 92syl 17 . . . . . . . . . . . . . 14 (𝑧 = (𝑦𝑏) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
94 reseq2 5886 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦𝑏) → (𝐹𝑧) = (𝐹 ↾ (𝑦𝑏)))
9594oveq2d 7291 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦𝑏) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑦𝑏))))
9695eleq1d 2823 . . . . . . . . . . . . . 14 (𝑧 = (𝑦𝑏) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢))
9793, 96bitrd 278 . . . . . . . . . . . . 13 (𝑧 = (𝑦𝑏) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢))
9897rspcv 3557 . . . . . . . . . . . 12 ((𝑦𝑏) ∈ (𝒫 𝐴 ∩ Fin) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢))
9988, 98syl 17 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢))
10039ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → 𝐺 ∈ CMnd)
10186adantrr 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝑦𝑏) ∈ Fin)
10241ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → 𝐹:𝐴𝐵)
10383adantrr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝑦𝑏) ⊆ 𝐴)
104102, 103fssresd 6641 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 ↾ (𝑦𝑏)):(𝑦𝑏)⟶𝐵)
10545, 47jctir 521 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 ∈ V ∧ 0 ∈ V))
106105ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 ∈ V ∧ 0 ∈ V))
107 ressuppss 7999 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ V ∧ 0 ∈ V) → ((𝐹 ↾ (𝑦𝑏)) supp 0 ) ⊆ (𝐹 supp 0 ))
108106, 107syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹 ↾ (𝑦𝑏)) supp 0 ) ⊆ (𝐹 supp 0 ))
10950ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 supp 0 ) ⊆ 𝑊)
110108, 109sstrd 3931 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹 ↾ (𝑦𝑏)) supp 0 ) ⊆ 𝑊)
11147a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → 0 ∈ V)
112104, 101, 111fdmfifsupp 9138 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 ↾ (𝑦𝑏)) finSupp 0 )
11337, 38, 100, 101, 104, 110, 112gsumres 19514 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐺 Σg ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊)) = (𝐺 Σg (𝐹 ↾ (𝑦𝑏))))
114 resres 5904 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊) = (𝐹 ↾ ((𝑦𝑏) ∩ 𝑊))
115 indir 4209 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑏) ∩ 𝑊) = ((𝑦𝑊) ∪ (𝑏𝑊))
11681, 34sstrdi 3933 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑏𝑊)
117116adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → 𝑏𝑊)
118 df-ss 3904 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏𝑊 ↔ (𝑏𝑊) = 𝑏)
119117, 118sylib 217 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝑏𝑊) = 𝑏)
120119uneq2d 4097 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝑦𝑊) ∪ (𝑏𝑊)) = ((𝑦𝑊) ∪ 𝑏))
121 simprr 770 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝑦𝑊) ⊆ 𝑏)
122 ssequn1 4114 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝑊) ⊆ 𝑏 ↔ ((𝑦𝑊) ∪ 𝑏) = 𝑏)
123121, 122sylib 217 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝑦𝑊) ∪ 𝑏) = 𝑏)
124120, 123eqtrd 2778 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝑦𝑊) ∪ (𝑏𝑊)) = 𝑏)
125115, 124eqtrid 2790 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝑦𝑏) ∩ 𝑊) = 𝑏)
126125reseq2d 5891 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 ↾ ((𝑦𝑏) ∩ 𝑊)) = (𝐹𝑏))
127114, 126eqtrid 2790 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊) = (𝐹𝑏))
128117resabs1d 5922 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹𝑊) ↾ 𝑏) = (𝐹𝑏))
129127, 128eqtr4d 2781 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊) = ((𝐹𝑊) ↾ 𝑏))
130129oveq2d 7291 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐺 Σg ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊)) = (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)))
131113, 130eqtr3d 2780 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) = (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)))
132131eleq1d 2823 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢 ↔ (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢))
133132biimpd 228 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢))
134133expr 457 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → ((𝑦𝑊) ⊆ 𝑏 → ((𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
135134com23 86 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢 → ((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
13699, 135syld 47 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → ((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
137136ralrimdva 3106 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → ∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
138 sseq1 3946 . . . . . . . . . 10 (𝑎 = (𝑦𝑊) → (𝑎𝑏 ↔ (𝑦𝑊) ⊆ 𝑏))
139138rspceaimv 3565 . . . . . . . . 9 (((𝑦𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ ∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢))
14077, 137, 139syl6an 681 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
141140rexlimdva 3213 . . . . . . 7 (𝜑 → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
14266, 141impbid 211 . . . . . 6 (𝜑 → (∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) ↔ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
143142imbi2d 341 . . . . 5 (𝜑 → ((𝑥𝑢 → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)) ↔ (𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))))
144143ralbidv 3112 . . . 4 (𝜑 → (∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))))
145144anbi2d 629 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢))) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))))
146 eqid 2738 . . . 4 (TopOpen‘𝐺) = (TopOpen‘𝐺)
147 eqid 2738 . . . 4 (𝒫 (𝐴𝑊) ∩ Fin) = (𝒫 (𝐴𝑊) ∩ Fin)
148 tsmsres.2 . . . 4 (𝜑𝐺 ∈ TopSp)
149 inex1g 5243 . . . . 5 (𝐴𝑉 → (𝐴𝑊) ∈ V)
15044, 149syl 17 . . . 4 (𝜑 → (𝐴𝑊) ∈ V)
151 fssres 6640 . . . . . 6 ((𝐹:𝐴𝐵 ∧ (𝐴𝑊) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵)
15241, 1, 151sylancl 586 . . . . 5 (𝜑 → (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵)
153 resres 5904 . . . . . . 7 ((𝐹𝐴) ↾ 𝑊) = (𝐹 ↾ (𝐴𝑊))
154 ffn 6600 . . . . . . . . 9 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
155 fnresdm 6551 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
15641, 154, 1553syl 18 . . . . . . . 8 (𝜑 → (𝐹𝐴) = 𝐹)
157156reseq1d 5890 . . . . . . 7 (𝜑 → ((𝐹𝐴) ↾ 𝑊) = (𝐹𝑊))
158153, 157eqtr3id 2792 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐴𝑊)) = (𝐹𝑊))
159158feq1d 6585 . . . . 5 (𝜑 → ((𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵 ↔ (𝐹𝑊):(𝐴𝑊)⟶𝐵))
160152, 159mpbid 231 . . . 4 (𝜑 → (𝐹𝑊):(𝐴𝑊)⟶𝐵)
16137, 146, 147, 39, 148, 150, 160eltsms 23284 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums (𝐹𝑊)) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))))
162 eqid 2738 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
16337, 146, 162, 39, 148, 44, 41eltsms 23284 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))))
164145, 161, 1633bitr4d 311 . 2 (𝜑 → (𝑥 ∈ (𝐺 tsums (𝐹𝑊)) ↔ 𝑥 ∈ (𝐺 tsums 𝐹)))
165164eqrdv 2736 1 (𝜑 → (𝐺 tsums (𝐹𝑊)) = (𝐺 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cun 3885  cin 3886  wss 3887  𝒫 cpw 4533  cres 5591   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275   supp csupp 7977  Fincfn 8733  Basecbs 16912  TopOpenctopn 17132  0gc0g 17150   Σg cgsu 17151  CMndccmn 19386  TopSpctps 22081   tsums ctsu 23277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-0g 17152  df-gsum 17153  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-cntz 18923  df-cmn 19388  df-fbas 20594  df-fg 20595  df-top 22043  df-topon 22060  df-topsp 22082  df-ntr 22171  df-nei 22249  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-tsms 23278
This theorem is referenced by:  tsmssplit  23303  esumss  32040
  Copyright terms: Public domain W3C validator