MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsres Structured version   Visualization version   GIF version

Theorem tsmsres 24057
Description: Extend an infinite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 18-Sep-2015.) (Revised by AV, 25-Jul-2019.)
Hypotheses
Ref Expression
tsmsres.b 𝐵 = (Base‘𝐺)
tsmsres.z 0 = (0g𝐺)
tsmsres.1 (𝜑𝐺 ∈ CMnd)
tsmsres.2 (𝜑𝐺 ∈ TopSp)
tsmsres.a (𝜑𝐴𝑉)
tsmsres.f (𝜑𝐹:𝐴𝐵)
tsmsres.s (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊)
Assertion
Ref Expression
tsmsres (𝜑 → (𝐺 tsums (𝐹𝑊)) = (𝐺 tsums 𝐹))

Proof of Theorem tsmsres
Dummy variables 𝑎 𝑏 𝑢 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4187 . . . . . . . . . . . 12 (𝐴𝑊) ⊆ 𝐴
21sspwi 4562 . . . . . . . . . . 11 𝒫 (𝐴𝑊) ⊆ 𝒫 𝐴
3 ssrin 4192 . . . . . . . . . . 11 (𝒫 (𝐴𝑊) ⊆ 𝒫 𝐴 → (𝒫 (𝐴𝑊) ∩ Fin) ⊆ (𝒫 𝐴 ∩ Fin))
42, 3ax-mp 5 . . . . . . . . . 10 (𝒫 (𝐴𝑊) ∩ Fin) ⊆ (𝒫 𝐴 ∩ Fin)
5 simpr 484 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin))
64, 5sselid 3932 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin))
7 elfpw 9238 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑧𝐴𝑧 ∈ Fin))
87simplbi 497 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧𝐴)
98adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧𝐴)
109ssrind 4194 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑊) ⊆ (𝐴𝑊))
11 elinel2 4152 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ∈ Fin)
1211adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧 ∈ Fin)
13 inss1 4187 . . . . . . . . . . . . . 14 (𝑧𝑊) ⊆ 𝑧
14 ssfi 9082 . . . . . . . . . . . . . 14 ((𝑧 ∈ Fin ∧ (𝑧𝑊) ⊆ 𝑧) → (𝑧𝑊) ∈ Fin)
1512, 13, 14sylancl 586 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑊) ∈ Fin)
16 elfpw 9238 . . . . . . . . . . . . 13 ((𝑧𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin) ↔ ((𝑧𝑊) ⊆ (𝐴𝑊) ∧ (𝑧𝑊) ∈ Fin))
1710, 15, 16sylanbrc 583 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin))
18 sseq2 3961 . . . . . . . . . . . . . . 15 (𝑏 = (𝑧𝑊) → (𝑎𝑏𝑎 ⊆ (𝑧𝑊)))
19 ssin 4189 . . . . . . . . . . . . . . 15 ((𝑎𝑧𝑎𝑊) ↔ 𝑎 ⊆ (𝑧𝑊))
2018, 19bitr4di 289 . . . . . . . . . . . . . 14 (𝑏 = (𝑧𝑊) → (𝑎𝑏 ↔ (𝑎𝑧𝑎𝑊)))
21 reseq2 5923 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑧𝑊) → ((𝐹𝑊) ↾ 𝑏) = ((𝐹𝑊) ↾ (𝑧𝑊)))
22 inss2 4188 . . . . . . . . . . . . . . . . . 18 (𝑧𝑊) ⊆ 𝑊
23 resabs1 5955 . . . . . . . . . . . . . . . . . 18 ((𝑧𝑊) ⊆ 𝑊 → ((𝐹𝑊) ↾ (𝑧𝑊)) = (𝐹 ↾ (𝑧𝑊)))
2422, 23ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝐹𝑊) ↾ (𝑧𝑊)) = (𝐹 ↾ (𝑧𝑊))
2521, 24eqtrdi 2782 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑧𝑊) → ((𝐹𝑊) ↾ 𝑏) = (𝐹 ↾ (𝑧𝑊)))
2625oveq2d 7362 . . . . . . . . . . . . . . 15 (𝑏 = (𝑧𝑊) → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) = (𝐺 Σg (𝐹 ↾ (𝑧𝑊))))
2726eleq1d 2816 . . . . . . . . . . . . . 14 (𝑏 = (𝑧𝑊) → ((𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢))
2820, 27imbi12d 344 . . . . . . . . . . . . 13 (𝑏 = (𝑧𝑊) → ((𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) ↔ ((𝑎𝑧𝑎𝑊) → (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢)))
2928rspcv 3573 . . . . . . . . . . . 12 ((𝑧𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ((𝑎𝑧𝑎𝑊) → (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢)))
3017, 29syl 17 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ((𝑎𝑧𝑎𝑊) → (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢)))
31 elfpw 9238 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ↔ (𝑎 ⊆ (𝐴𝑊) ∧ 𝑎 ∈ Fin))
3231simplbi 497 . . . . . . . . . . . . . . 15 (𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin) → 𝑎 ⊆ (𝐴𝑊))
3332ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ⊆ (𝐴𝑊))
34 inss2 4188 . . . . . . . . . . . . . 14 (𝐴𝑊) ⊆ 𝑊
3533, 34sstrdi 3947 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎𝑊)
3635biantrud 531 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑎𝑧 ↔ (𝑎𝑧𝑎𝑊)))
37 tsmsres.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝐺)
38 tsmsres.z . . . . . . . . . . . . . . 15 0 = (0g𝐺)
39 tsmsres.1 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ CMnd)
4039ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
41 tsmsres.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐴𝐵)
4241ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐴𝐵)
4342, 9fssresd 6690 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧):𝑧𝐵)
44 tsmsres.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴𝑉)
4541, 44fexd 7161 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ V)
4645ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹 ∈ V)
4738fvexi 6836 . . . . . . . . . . . . . . . . 17 0 ∈ V
48 ressuppss 8113 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ V ∧ 0 ∈ V) → ((𝐹𝑧) supp 0 ) ⊆ (𝐹 supp 0 ))
4946, 47, 48sylancl 586 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹𝑧) supp 0 ) ⊆ (𝐹 supp 0 ))
50 tsmsres.s . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊)
5150ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ⊆ 𝑊)
5249, 51sstrd 3945 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹𝑧) supp 0 ) ⊆ 𝑊)
5347a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ∈ V)
5443, 12, 53fdmfifsupp 9259 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧) finSupp 0 )
5537, 38, 40, 12, 43, 52, 54gsumres 19823 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg ((𝐹𝑧) ↾ 𝑊)) = (𝐺 Σg (𝐹𝑧)))
56 resres 5941 . . . . . . . . . . . . . . 15 ((𝐹𝑧) ↾ 𝑊) = (𝐹 ↾ (𝑧𝑊))
5756oveq2i 7357 . . . . . . . . . . . . . 14 (𝐺 Σg ((𝐹𝑧) ↾ 𝑊)) = (𝐺 Σg (𝐹 ↾ (𝑧𝑊)))
5855, 57eqtr3di 2781 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑧𝑊))))
5958eleq1d 2816 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢))
6036, 59imbi12d 344 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ((𝑎𝑧𝑎𝑊) → (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢)))
6130, 60sylibrd 259 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → (𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
6261ralrimdva 3132 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
63 sseq1 3960 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝑦𝑧𝑎𝑧))
6463rspceaimv 3583 . . . . . . . . 9 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
656, 62, 64syl6an 684 . . . . . . . 8 ((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
6665rexlimdva 3133 . . . . . . 7 (𝜑 → (∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
67 elfpw 9238 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦𝐴𝑦 ∈ Fin))
6867simplbi 497 . . . . . . . . . . . 12 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
6968adantl 481 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
7069ssrind 4194 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦𝑊) ⊆ (𝐴𝑊))
71 elinel2 4152 . . . . . . . . . . . 12 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
7271adantl 481 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
73 inss1 4187 . . . . . . . . . . 11 (𝑦𝑊) ⊆ 𝑦
74 ssfi 9082 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ (𝑦𝑊) ⊆ 𝑦) → (𝑦𝑊) ∈ Fin)
7572, 73, 74sylancl 586 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦𝑊) ∈ Fin)
76 elfpw 9238 . . . . . . . . . 10 ((𝑦𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin) ↔ ((𝑦𝑊) ⊆ (𝐴𝑊) ∧ (𝑦𝑊) ∈ Fin))
7770, 75, 76sylanbrc 583 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin))
7868ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑦𝐴)
79 elfpw 9238 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ↔ (𝑏 ⊆ (𝐴𝑊) ∧ 𝑏 ∈ Fin))
8079simplbi 497 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) → 𝑏 ⊆ (𝐴𝑊))
8180adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑏 ⊆ (𝐴𝑊))
8281, 1sstrdi 3947 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑏𝐴)
8378, 82unssd 4142 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (𝑦𝑏) ⊆ 𝐴)
84 elinel2 4152 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) → 𝑏 ∈ Fin)
85 unfi 9080 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ 𝑏 ∈ Fin) → (𝑦𝑏) ∈ Fin)
8672, 84, 85syl2an 596 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (𝑦𝑏) ∈ Fin)
87 elfpw 9238 . . . . . . . . . . . . 13 ((𝑦𝑏) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝑦𝑏) ⊆ 𝐴 ∧ (𝑦𝑏) ∈ Fin))
8883, 86, 87sylanbrc 583 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (𝑦𝑏) ∈ (𝒫 𝐴 ∩ Fin))
89 ssun1 4128 . . . . . . . . . . . . . . . 16 𝑦 ⊆ (𝑦𝑏)
90 id 22 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦𝑏) → 𝑧 = (𝑦𝑏))
9189, 90sseqtrrid 3978 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦𝑏) → 𝑦𝑧)
92 pm5.5 361 . . . . . . . . . . . . . . 15 (𝑦𝑧 → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
9391, 92syl 17 . . . . . . . . . . . . . 14 (𝑧 = (𝑦𝑏) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
94 reseq2 5923 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦𝑏) → (𝐹𝑧) = (𝐹 ↾ (𝑦𝑏)))
9594oveq2d 7362 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦𝑏) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑦𝑏))))
9695eleq1d 2816 . . . . . . . . . . . . . 14 (𝑧 = (𝑦𝑏) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢))
9793, 96bitrd 279 . . . . . . . . . . . . 13 (𝑧 = (𝑦𝑏) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢))
9897rspcv 3573 . . . . . . . . . . . 12 ((𝑦𝑏) ∈ (𝒫 𝐴 ∩ Fin) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢))
9988, 98syl 17 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢))
10039ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → 𝐺 ∈ CMnd)
10186adantrr 717 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝑦𝑏) ∈ Fin)
10241ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → 𝐹:𝐴𝐵)
10383adantrr 717 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝑦𝑏) ⊆ 𝐴)
104102, 103fssresd 6690 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 ↾ (𝑦𝑏)):(𝑦𝑏)⟶𝐵)
10545, 47jctir 520 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 ∈ V ∧ 0 ∈ V))
106105ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 ∈ V ∧ 0 ∈ V))
107 ressuppss 8113 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ V ∧ 0 ∈ V) → ((𝐹 ↾ (𝑦𝑏)) supp 0 ) ⊆ (𝐹 supp 0 ))
108106, 107syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹 ↾ (𝑦𝑏)) supp 0 ) ⊆ (𝐹 supp 0 ))
10950ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 supp 0 ) ⊆ 𝑊)
110108, 109sstrd 3945 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹 ↾ (𝑦𝑏)) supp 0 ) ⊆ 𝑊)
11147a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → 0 ∈ V)
112104, 101, 111fdmfifsupp 9259 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 ↾ (𝑦𝑏)) finSupp 0 )
11337, 38, 100, 101, 104, 110, 112gsumres 19823 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐺 Σg ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊)) = (𝐺 Σg (𝐹 ↾ (𝑦𝑏))))
114 resres 5941 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊) = (𝐹 ↾ ((𝑦𝑏) ∩ 𝑊))
115 indir 4236 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑏) ∩ 𝑊) = ((𝑦𝑊) ∪ (𝑏𝑊))
11681, 34sstrdi 3947 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑏𝑊)
117116adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → 𝑏𝑊)
118 dfss2 3920 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏𝑊 ↔ (𝑏𝑊) = 𝑏)
119117, 118sylib 218 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝑏𝑊) = 𝑏)
120119uneq2d 4118 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝑦𝑊) ∪ (𝑏𝑊)) = ((𝑦𝑊) ∪ 𝑏))
121 simprr 772 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝑦𝑊) ⊆ 𝑏)
122 ssequn1 4136 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝑊) ⊆ 𝑏 ↔ ((𝑦𝑊) ∪ 𝑏) = 𝑏)
123121, 122sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝑦𝑊) ∪ 𝑏) = 𝑏)
124120, 123eqtrd 2766 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝑦𝑊) ∪ (𝑏𝑊)) = 𝑏)
125115, 124eqtrid 2778 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝑦𝑏) ∩ 𝑊) = 𝑏)
126125reseq2d 5928 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 ↾ ((𝑦𝑏) ∩ 𝑊)) = (𝐹𝑏))
127114, 126eqtrid 2778 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊) = (𝐹𝑏))
128117resabs1d 5957 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹𝑊) ↾ 𝑏) = (𝐹𝑏))
129127, 128eqtr4d 2769 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊) = ((𝐹𝑊) ↾ 𝑏))
130129oveq2d 7362 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐺 Σg ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊)) = (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)))
131113, 130eqtr3d 2768 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) = (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)))
132131eleq1d 2816 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢 ↔ (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢))
133132biimpd 229 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢))
134133expr 456 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → ((𝑦𝑊) ⊆ 𝑏 → ((𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
135134com23 86 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢 → ((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
13699, 135syld 47 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → ((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
137136ralrimdva 3132 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → ∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
138 sseq1 3960 . . . . . . . . . 10 (𝑎 = (𝑦𝑊) → (𝑎𝑏 ↔ (𝑦𝑊) ⊆ 𝑏))
139138rspceaimv 3583 . . . . . . . . 9 (((𝑦𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ ∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢))
14077, 137, 139syl6an 684 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
141140rexlimdva 3133 . . . . . . 7 (𝜑 → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
14266, 141impbid 212 . . . . . 6 (𝜑 → (∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) ↔ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
143142imbi2d 340 . . . . 5 (𝜑 → ((𝑥𝑢 → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)) ↔ (𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))))
144143ralbidv 3155 . . . 4 (𝜑 → (∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))))
145144anbi2d 630 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢))) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))))
146 eqid 2731 . . . 4 (TopOpen‘𝐺) = (TopOpen‘𝐺)
147 eqid 2731 . . . 4 (𝒫 (𝐴𝑊) ∩ Fin) = (𝒫 (𝐴𝑊) ∩ Fin)
148 tsmsres.2 . . . 4 (𝜑𝐺 ∈ TopSp)
149 inex1g 5257 . . . . 5 (𝐴𝑉 → (𝐴𝑊) ∈ V)
15044, 149syl 17 . . . 4 (𝜑 → (𝐴𝑊) ∈ V)
151 fssres 6689 . . . . . 6 ((𝐹:𝐴𝐵 ∧ (𝐴𝑊) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵)
15241, 1, 151sylancl 586 . . . . 5 (𝜑 → (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵)
153 resres 5941 . . . . . . 7 ((𝐹𝐴) ↾ 𝑊) = (𝐹 ↾ (𝐴𝑊))
154 ffn 6651 . . . . . . . . 9 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
155 fnresdm 6600 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
15641, 154, 1553syl 18 . . . . . . . 8 (𝜑 → (𝐹𝐴) = 𝐹)
157156reseq1d 5927 . . . . . . 7 (𝜑 → ((𝐹𝐴) ↾ 𝑊) = (𝐹𝑊))
158153, 157eqtr3id 2780 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐴𝑊)) = (𝐹𝑊))
159158feq1d 6633 . . . . 5 (𝜑 → ((𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵 ↔ (𝐹𝑊):(𝐴𝑊)⟶𝐵))
160152, 159mpbid 232 . . . 4 (𝜑 → (𝐹𝑊):(𝐴𝑊)⟶𝐵)
16137, 146, 147, 39, 148, 150, 160eltsms 24046 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums (𝐹𝑊)) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))))
162 eqid 2731 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
16337, 146, 162, 39, 148, 44, 41eltsms 24046 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))))
164145, 161, 1633bitr4d 311 . 2 (𝜑 → (𝑥 ∈ (𝐺 tsums (𝐹𝑊)) ↔ 𝑥 ∈ (𝐺 tsums 𝐹)))
165164eqrdv 2729 1 (𝜑 → (𝐺 tsums (𝐹𝑊)) = (𝐺 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cun 3900  cin 3901  wss 3902  𝒫 cpw 4550  cres 5618   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346   supp csupp 8090  Fincfn 8869  Basecbs 17117  TopOpenctopn 17322  0gc0g 17340   Σg cgsu 17341  CMndccmn 19690  TopSpctps 22845   tsums ctsu 24039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-0g 17342  df-gsum 17343  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-cntz 19227  df-cmn 19692  df-fbas 21286  df-fg 21287  df-top 22807  df-topon 22824  df-topsp 22846  df-ntr 22933  df-nei 23011  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-tsms 24040
This theorem is referenced by:  tsmssplit  24065  esumss  34080
  Copyright terms: Public domain W3C validator