MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsres Structured version   Visualization version   GIF version

Theorem tsmsres 23041
Description: Extend an infinite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 18-Sep-2015.) (Revised by AV, 25-Jul-2019.)
Hypotheses
Ref Expression
tsmsres.b 𝐵 = (Base‘𝐺)
tsmsres.z 0 = (0g𝐺)
tsmsres.1 (𝜑𝐺 ∈ CMnd)
tsmsres.2 (𝜑𝐺 ∈ TopSp)
tsmsres.a (𝜑𝐴𝑉)
tsmsres.f (𝜑𝐹:𝐴𝐵)
tsmsres.s (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊)
Assertion
Ref Expression
tsmsres (𝜑 → (𝐺 tsums (𝐹𝑊)) = (𝐺 tsums 𝐹))

Proof of Theorem tsmsres
Dummy variables 𝑎 𝑏 𝑢 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4143 . . . . . . . . . . . 12 (𝐴𝑊) ⊆ 𝐴
21sspwi 4527 . . . . . . . . . . 11 𝒫 (𝐴𝑊) ⊆ 𝒫 𝐴
3 ssrin 4148 . . . . . . . . . . 11 (𝒫 (𝐴𝑊) ⊆ 𝒫 𝐴 → (𝒫 (𝐴𝑊) ∩ Fin) ⊆ (𝒫 𝐴 ∩ Fin))
42, 3ax-mp 5 . . . . . . . . . 10 (𝒫 (𝐴𝑊) ∩ Fin) ⊆ (𝒫 𝐴 ∩ Fin)
5 simpr 488 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin))
64, 5sseldi 3899 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin))
7 elfpw 8978 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑧𝐴𝑧 ∈ Fin))
87simplbi 501 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧𝐴)
98adantl 485 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧𝐴)
109ssrind 4150 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑊) ⊆ (𝐴𝑊))
11 elinel2 4110 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ∈ Fin)
1211adantl 485 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧 ∈ Fin)
13 inss1 4143 . . . . . . . . . . . . . 14 (𝑧𝑊) ⊆ 𝑧
14 ssfi 8851 . . . . . . . . . . . . . 14 ((𝑧 ∈ Fin ∧ (𝑧𝑊) ⊆ 𝑧) → (𝑧𝑊) ∈ Fin)
1512, 13, 14sylancl 589 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑊) ∈ Fin)
16 elfpw 8978 . . . . . . . . . . . . 13 ((𝑧𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin) ↔ ((𝑧𝑊) ⊆ (𝐴𝑊) ∧ (𝑧𝑊) ∈ Fin))
1710, 15, 16sylanbrc 586 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin))
18 sseq2 3927 . . . . . . . . . . . . . . 15 (𝑏 = (𝑧𝑊) → (𝑎𝑏𝑎 ⊆ (𝑧𝑊)))
19 ssin 4145 . . . . . . . . . . . . . . 15 ((𝑎𝑧𝑎𝑊) ↔ 𝑎 ⊆ (𝑧𝑊))
2018, 19bitr4di 292 . . . . . . . . . . . . . 14 (𝑏 = (𝑧𝑊) → (𝑎𝑏 ↔ (𝑎𝑧𝑎𝑊)))
21 reseq2 5846 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑧𝑊) → ((𝐹𝑊) ↾ 𝑏) = ((𝐹𝑊) ↾ (𝑧𝑊)))
22 inss2 4144 . . . . . . . . . . . . . . . . . 18 (𝑧𝑊) ⊆ 𝑊
23 resabs1 5881 . . . . . . . . . . . . . . . . . 18 ((𝑧𝑊) ⊆ 𝑊 → ((𝐹𝑊) ↾ (𝑧𝑊)) = (𝐹 ↾ (𝑧𝑊)))
2422, 23ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝐹𝑊) ↾ (𝑧𝑊)) = (𝐹 ↾ (𝑧𝑊))
2521, 24eqtrdi 2794 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑧𝑊) → ((𝐹𝑊) ↾ 𝑏) = (𝐹 ↾ (𝑧𝑊)))
2625oveq2d 7229 . . . . . . . . . . . . . . 15 (𝑏 = (𝑧𝑊) → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) = (𝐺 Σg (𝐹 ↾ (𝑧𝑊))))
2726eleq1d 2822 . . . . . . . . . . . . . 14 (𝑏 = (𝑧𝑊) → ((𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢))
2820, 27imbi12d 348 . . . . . . . . . . . . 13 (𝑏 = (𝑧𝑊) → ((𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) ↔ ((𝑎𝑧𝑎𝑊) → (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢)))
2928rspcv 3532 . . . . . . . . . . . 12 ((𝑧𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ((𝑎𝑧𝑎𝑊) → (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢)))
3017, 29syl 17 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ((𝑎𝑧𝑎𝑊) → (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢)))
31 elfpw 8978 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ↔ (𝑎 ⊆ (𝐴𝑊) ∧ 𝑎 ∈ Fin))
3231simplbi 501 . . . . . . . . . . . . . . 15 (𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin) → 𝑎 ⊆ (𝐴𝑊))
3332ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ⊆ (𝐴𝑊))
34 inss2 4144 . . . . . . . . . . . . . 14 (𝐴𝑊) ⊆ 𝑊
3533, 34sstrdi 3913 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎𝑊)
3635biantrud 535 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑎𝑧 ↔ (𝑎𝑧𝑎𝑊)))
37 tsmsres.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝐺)
38 tsmsres.z . . . . . . . . . . . . . . 15 0 = (0g𝐺)
39 tsmsres.1 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ CMnd)
4039ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
41 tsmsres.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐴𝐵)
4241ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐴𝐵)
4342, 9fssresd 6586 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧):𝑧𝐵)
44 tsmsres.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴𝑉)
4541, 44fexd 7043 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ V)
4645ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹 ∈ V)
4738fvexi 6731 . . . . . . . . . . . . . . . . 17 0 ∈ V
48 ressuppss 7925 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ V ∧ 0 ∈ V) → ((𝐹𝑧) supp 0 ) ⊆ (𝐹 supp 0 ))
4946, 47, 48sylancl 589 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹𝑧) supp 0 ) ⊆ (𝐹 supp 0 ))
50 tsmsres.s . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊)
5150ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ⊆ 𝑊)
5249, 51sstrd 3911 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹𝑧) supp 0 ) ⊆ 𝑊)
5347a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ∈ V)
5443, 12, 53fdmfifsupp 8995 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧) finSupp 0 )
5537, 38, 40, 12, 43, 52, 54gsumres 19298 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg ((𝐹𝑧) ↾ 𝑊)) = (𝐺 Σg (𝐹𝑧)))
56 resres 5864 . . . . . . . . . . . . . . 15 ((𝐹𝑧) ↾ 𝑊) = (𝐹 ↾ (𝑧𝑊))
5756oveq2i 7224 . . . . . . . . . . . . . 14 (𝐺 Σg ((𝐹𝑧) ↾ 𝑊)) = (𝐺 Σg (𝐹 ↾ (𝑧𝑊)))
5855, 57eqtr3di 2793 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑧𝑊))))
5958eleq1d 2822 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢))
6036, 59imbi12d 348 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ((𝑎𝑧𝑎𝑊) → (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢)))
6130, 60sylibrd 262 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → (𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
6261ralrimdva 3110 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
63 sseq1 3926 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝑦𝑧𝑎𝑧))
6463rspceaimv 3542 . . . . . . . . 9 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
656, 62, 64syl6an 684 . . . . . . . 8 ((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
6665rexlimdva 3203 . . . . . . 7 (𝜑 → (∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
67 elfpw 8978 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦𝐴𝑦 ∈ Fin))
6867simplbi 501 . . . . . . . . . . . 12 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
6968adantl 485 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
7069ssrind 4150 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦𝑊) ⊆ (𝐴𝑊))
71 elinel2 4110 . . . . . . . . . . . 12 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
7271adantl 485 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
73 inss1 4143 . . . . . . . . . . 11 (𝑦𝑊) ⊆ 𝑦
74 ssfi 8851 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ (𝑦𝑊) ⊆ 𝑦) → (𝑦𝑊) ∈ Fin)
7572, 73, 74sylancl 589 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦𝑊) ∈ Fin)
76 elfpw 8978 . . . . . . . . . 10 ((𝑦𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin) ↔ ((𝑦𝑊) ⊆ (𝐴𝑊) ∧ (𝑦𝑊) ∈ Fin))
7770, 75, 76sylanbrc 586 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin))
7868ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑦𝐴)
79 elfpw 8978 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ↔ (𝑏 ⊆ (𝐴𝑊) ∧ 𝑏 ∈ Fin))
8079simplbi 501 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) → 𝑏 ⊆ (𝐴𝑊))
8180adantl 485 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑏 ⊆ (𝐴𝑊))
8281, 1sstrdi 3913 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑏𝐴)
8378, 82unssd 4100 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (𝑦𝑏) ⊆ 𝐴)
84 elinel2 4110 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) → 𝑏 ∈ Fin)
85 unfi 8850 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ 𝑏 ∈ Fin) → (𝑦𝑏) ∈ Fin)
8672, 84, 85syl2an 599 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (𝑦𝑏) ∈ Fin)
87 elfpw 8978 . . . . . . . . . . . . 13 ((𝑦𝑏) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝑦𝑏) ⊆ 𝐴 ∧ (𝑦𝑏) ∈ Fin))
8883, 86, 87sylanbrc 586 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (𝑦𝑏) ∈ (𝒫 𝐴 ∩ Fin))
89 ssun1 4086 . . . . . . . . . . . . . . . 16 𝑦 ⊆ (𝑦𝑏)
90 id 22 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦𝑏) → 𝑧 = (𝑦𝑏))
9189, 90sseqtrrid 3954 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦𝑏) → 𝑦𝑧)
92 pm5.5 365 . . . . . . . . . . . . . . 15 (𝑦𝑧 → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
9391, 92syl 17 . . . . . . . . . . . . . 14 (𝑧 = (𝑦𝑏) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
94 reseq2 5846 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦𝑏) → (𝐹𝑧) = (𝐹 ↾ (𝑦𝑏)))
9594oveq2d 7229 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦𝑏) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑦𝑏))))
9695eleq1d 2822 . . . . . . . . . . . . . 14 (𝑧 = (𝑦𝑏) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢))
9793, 96bitrd 282 . . . . . . . . . . . . 13 (𝑧 = (𝑦𝑏) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢))
9897rspcv 3532 . . . . . . . . . . . 12 ((𝑦𝑏) ∈ (𝒫 𝐴 ∩ Fin) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢))
9988, 98syl 17 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢))
10039ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → 𝐺 ∈ CMnd)
10186adantrr 717 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝑦𝑏) ∈ Fin)
10241ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → 𝐹:𝐴𝐵)
10383adantrr 717 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝑦𝑏) ⊆ 𝐴)
104102, 103fssresd 6586 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 ↾ (𝑦𝑏)):(𝑦𝑏)⟶𝐵)
10545, 47jctir 524 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 ∈ V ∧ 0 ∈ V))
106105ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 ∈ V ∧ 0 ∈ V))
107 ressuppss 7925 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ V ∧ 0 ∈ V) → ((𝐹 ↾ (𝑦𝑏)) supp 0 ) ⊆ (𝐹 supp 0 ))
108106, 107syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹 ↾ (𝑦𝑏)) supp 0 ) ⊆ (𝐹 supp 0 ))
10950ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 supp 0 ) ⊆ 𝑊)
110108, 109sstrd 3911 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹 ↾ (𝑦𝑏)) supp 0 ) ⊆ 𝑊)
11147a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → 0 ∈ V)
112104, 101, 111fdmfifsupp 8995 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 ↾ (𝑦𝑏)) finSupp 0 )
11337, 38, 100, 101, 104, 110, 112gsumres 19298 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐺 Σg ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊)) = (𝐺 Σg (𝐹 ↾ (𝑦𝑏))))
114 resres 5864 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊) = (𝐹 ↾ ((𝑦𝑏) ∩ 𝑊))
115 indir 4190 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑏) ∩ 𝑊) = ((𝑦𝑊) ∪ (𝑏𝑊))
11681, 34sstrdi 3913 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑏𝑊)
117116adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → 𝑏𝑊)
118 df-ss 3883 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏𝑊 ↔ (𝑏𝑊) = 𝑏)
119117, 118sylib 221 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝑏𝑊) = 𝑏)
120119uneq2d 4077 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝑦𝑊) ∪ (𝑏𝑊)) = ((𝑦𝑊) ∪ 𝑏))
121 simprr 773 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝑦𝑊) ⊆ 𝑏)
122 ssequn1 4094 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝑊) ⊆ 𝑏 ↔ ((𝑦𝑊) ∪ 𝑏) = 𝑏)
123121, 122sylib 221 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝑦𝑊) ∪ 𝑏) = 𝑏)
124120, 123eqtrd 2777 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝑦𝑊) ∪ (𝑏𝑊)) = 𝑏)
125115, 124syl5eq 2790 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝑦𝑏) ∩ 𝑊) = 𝑏)
126125reseq2d 5851 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 ↾ ((𝑦𝑏) ∩ 𝑊)) = (𝐹𝑏))
127114, 126syl5eq 2790 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊) = (𝐹𝑏))
128117resabs1d 5882 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹𝑊) ↾ 𝑏) = (𝐹𝑏))
129127, 128eqtr4d 2780 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊) = ((𝐹𝑊) ↾ 𝑏))
130129oveq2d 7229 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐺 Σg ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊)) = (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)))
131113, 130eqtr3d 2779 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) = (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)))
132131eleq1d 2822 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢 ↔ (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢))
133132biimpd 232 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢))
134133expr 460 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → ((𝑦𝑊) ⊆ 𝑏 → ((𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
135134com23 86 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢 → ((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
13699, 135syld 47 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → ((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
137136ralrimdva 3110 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → ∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
138 sseq1 3926 . . . . . . . . . 10 (𝑎 = (𝑦𝑊) → (𝑎𝑏 ↔ (𝑦𝑊) ⊆ 𝑏))
139138rspceaimv 3542 . . . . . . . . 9 (((𝑦𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ ∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢))
14077, 137, 139syl6an 684 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
141140rexlimdva 3203 . . . . . . 7 (𝜑 → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
14266, 141impbid 215 . . . . . 6 (𝜑 → (∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) ↔ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
143142imbi2d 344 . . . . 5 (𝜑 → ((𝑥𝑢 → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)) ↔ (𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))))
144143ralbidv 3118 . . . 4 (𝜑 → (∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))))
145144anbi2d 632 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢))) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))))
146 eqid 2737 . . . 4 (TopOpen‘𝐺) = (TopOpen‘𝐺)
147 eqid 2737 . . . 4 (𝒫 (𝐴𝑊) ∩ Fin) = (𝒫 (𝐴𝑊) ∩ Fin)
148 tsmsres.2 . . . 4 (𝜑𝐺 ∈ TopSp)
149 inex1g 5212 . . . . 5 (𝐴𝑉 → (𝐴𝑊) ∈ V)
15044, 149syl 17 . . . 4 (𝜑 → (𝐴𝑊) ∈ V)
151 fssres 6585 . . . . . 6 ((𝐹:𝐴𝐵 ∧ (𝐴𝑊) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵)
15241, 1, 151sylancl 589 . . . . 5 (𝜑 → (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵)
153 resres 5864 . . . . . . 7 ((𝐹𝐴) ↾ 𝑊) = (𝐹 ↾ (𝐴𝑊))
154 ffn 6545 . . . . . . . . 9 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
155 fnresdm 6496 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
15641, 154, 1553syl 18 . . . . . . . 8 (𝜑 → (𝐹𝐴) = 𝐹)
157156reseq1d 5850 . . . . . . 7 (𝜑 → ((𝐹𝐴) ↾ 𝑊) = (𝐹𝑊))
158153, 157eqtr3id 2792 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐴𝑊)) = (𝐹𝑊))
159158feq1d 6530 . . . . 5 (𝜑 → ((𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵 ↔ (𝐹𝑊):(𝐴𝑊)⟶𝐵))
160152, 159mpbid 235 . . . 4 (𝜑 → (𝐹𝑊):(𝐴𝑊)⟶𝐵)
16137, 146, 147, 39, 148, 150, 160eltsms 23030 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums (𝐹𝑊)) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))))
162 eqid 2737 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
16337, 146, 162, 39, 148, 44, 41eltsms 23030 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))))
164145, 161, 1633bitr4d 314 . 2 (𝜑 → (𝑥 ∈ (𝐺 tsums (𝐹𝑊)) ↔ 𝑥 ∈ (𝐺 tsums 𝐹)))
165164eqrdv 2735 1 (𝜑 → (𝐺 tsums (𝐹𝑊)) = (𝐺 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  wrex 3062  Vcvv 3408  cun 3864  cin 3865  wss 3866  𝒫 cpw 4513  cres 5553   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213   supp csupp 7903  Fincfn 8626  Basecbs 16760  TopOpenctopn 16926  0gc0g 16944   Σg cgsu 16945  CMndccmn 19170  TopSpctps 21829   tsums ctsu 23023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-0g 16946  df-gsum 16947  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-cntz 18711  df-cmn 19172  df-fbas 20360  df-fg 20361  df-top 21791  df-topon 21808  df-topsp 21830  df-ntr 21917  df-nei 21995  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-tsms 23024
This theorem is referenced by:  tsmssplit  23049  esumss  31752
  Copyright terms: Public domain W3C validator