MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsres Structured version   Visualization version   GIF version

Theorem tsmsres 24060
Description: Extend an infinite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 18-Sep-2015.) (Revised by AV, 25-Jul-2019.)
Hypotheses
Ref Expression
tsmsres.b 𝐵 = (Base‘𝐺)
tsmsres.z 0 = (0g𝐺)
tsmsres.1 (𝜑𝐺 ∈ CMnd)
tsmsres.2 (𝜑𝐺 ∈ TopSp)
tsmsres.a (𝜑𝐴𝑉)
tsmsres.f (𝜑𝐹:𝐴𝐵)
tsmsres.s (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊)
Assertion
Ref Expression
tsmsres (𝜑 → (𝐺 tsums (𝐹𝑊)) = (𝐺 tsums 𝐹))

Proof of Theorem tsmsres
Dummy variables 𝑎 𝑏 𝑢 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4186 . . . . . . . . . . . 12 (𝐴𝑊) ⊆ 𝐴
21sspwi 4561 . . . . . . . . . . 11 𝒫 (𝐴𝑊) ⊆ 𝒫 𝐴
3 ssrin 4191 . . . . . . . . . . 11 (𝒫 (𝐴𝑊) ⊆ 𝒫 𝐴 → (𝒫 (𝐴𝑊) ∩ Fin) ⊆ (𝒫 𝐴 ∩ Fin))
42, 3ax-mp 5 . . . . . . . . . 10 (𝒫 (𝐴𝑊) ∩ Fin) ⊆ (𝒫 𝐴 ∩ Fin)
5 simpr 484 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin))
64, 5sselid 3928 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin))
7 elfpw 9245 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑧𝐴𝑧 ∈ Fin))
87simplbi 497 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧𝐴)
98adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧𝐴)
109ssrind 4193 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑊) ⊆ (𝐴𝑊))
11 elinel2 4151 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ∈ Fin)
1211adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧 ∈ Fin)
13 inss1 4186 . . . . . . . . . . . . . 14 (𝑧𝑊) ⊆ 𝑧
14 ssfi 9089 . . . . . . . . . . . . . 14 ((𝑧 ∈ Fin ∧ (𝑧𝑊) ⊆ 𝑧) → (𝑧𝑊) ∈ Fin)
1512, 13, 14sylancl 586 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑊) ∈ Fin)
16 elfpw 9245 . . . . . . . . . . . . 13 ((𝑧𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin) ↔ ((𝑧𝑊) ⊆ (𝐴𝑊) ∧ (𝑧𝑊) ∈ Fin))
1710, 15, 16sylanbrc 583 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin))
18 sseq2 3957 . . . . . . . . . . . . . . 15 (𝑏 = (𝑧𝑊) → (𝑎𝑏𝑎 ⊆ (𝑧𝑊)))
19 ssin 4188 . . . . . . . . . . . . . . 15 ((𝑎𝑧𝑎𝑊) ↔ 𝑎 ⊆ (𝑧𝑊))
2018, 19bitr4di 289 . . . . . . . . . . . . . 14 (𝑏 = (𝑧𝑊) → (𝑎𝑏 ↔ (𝑎𝑧𝑎𝑊)))
21 reseq2 5927 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑧𝑊) → ((𝐹𝑊) ↾ 𝑏) = ((𝐹𝑊) ↾ (𝑧𝑊)))
22 inss2 4187 . . . . . . . . . . . . . . . . . 18 (𝑧𝑊) ⊆ 𝑊
23 resabs1 5959 . . . . . . . . . . . . . . . . . 18 ((𝑧𝑊) ⊆ 𝑊 → ((𝐹𝑊) ↾ (𝑧𝑊)) = (𝐹 ↾ (𝑧𝑊)))
2422, 23ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝐹𝑊) ↾ (𝑧𝑊)) = (𝐹 ↾ (𝑧𝑊))
2521, 24eqtrdi 2784 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑧𝑊) → ((𝐹𝑊) ↾ 𝑏) = (𝐹 ↾ (𝑧𝑊)))
2625oveq2d 7368 . . . . . . . . . . . . . . 15 (𝑏 = (𝑧𝑊) → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) = (𝐺 Σg (𝐹 ↾ (𝑧𝑊))))
2726eleq1d 2818 . . . . . . . . . . . . . 14 (𝑏 = (𝑧𝑊) → ((𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢))
2820, 27imbi12d 344 . . . . . . . . . . . . 13 (𝑏 = (𝑧𝑊) → ((𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) ↔ ((𝑎𝑧𝑎𝑊) → (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢)))
2928rspcv 3569 . . . . . . . . . . . 12 ((𝑧𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ((𝑎𝑧𝑎𝑊) → (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢)))
3017, 29syl 17 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ((𝑎𝑧𝑎𝑊) → (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢)))
31 elfpw 9245 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ↔ (𝑎 ⊆ (𝐴𝑊) ∧ 𝑎 ∈ Fin))
3231simplbi 497 . . . . . . . . . . . . . . 15 (𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin) → 𝑎 ⊆ (𝐴𝑊))
3332ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ⊆ (𝐴𝑊))
34 inss2 4187 . . . . . . . . . . . . . 14 (𝐴𝑊) ⊆ 𝑊
3533, 34sstrdi 3943 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎𝑊)
3635biantrud 531 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑎𝑧 ↔ (𝑎𝑧𝑎𝑊)))
37 tsmsres.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝐺)
38 tsmsres.z . . . . . . . . . . . . . . 15 0 = (0g𝐺)
39 tsmsres.1 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ CMnd)
4039ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
41 tsmsres.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐴𝐵)
4241ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐴𝐵)
4342, 9fssresd 6695 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧):𝑧𝐵)
44 tsmsres.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴𝑉)
4541, 44fexd 7167 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ V)
4645ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹 ∈ V)
4738fvexi 6842 . . . . . . . . . . . . . . . . 17 0 ∈ V
48 ressuppss 8119 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ V ∧ 0 ∈ V) → ((𝐹𝑧) supp 0 ) ⊆ (𝐹 supp 0 ))
4946, 47, 48sylancl 586 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹𝑧) supp 0 ) ⊆ (𝐹 supp 0 ))
50 tsmsres.s . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊)
5150ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ⊆ 𝑊)
5249, 51sstrd 3941 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹𝑧) supp 0 ) ⊆ 𝑊)
5347a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ∈ V)
5443, 12, 53fdmfifsupp 9266 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧) finSupp 0 )
5537, 38, 40, 12, 43, 52, 54gsumres 19827 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg ((𝐹𝑧) ↾ 𝑊)) = (𝐺 Σg (𝐹𝑧)))
56 resres 5945 . . . . . . . . . . . . . . 15 ((𝐹𝑧) ↾ 𝑊) = (𝐹 ↾ (𝑧𝑊))
5756oveq2i 7363 . . . . . . . . . . . . . 14 (𝐺 Σg ((𝐹𝑧) ↾ 𝑊)) = (𝐺 Σg (𝐹 ↾ (𝑧𝑊)))
5855, 57eqtr3di 2783 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑧𝑊))))
5958eleq1d 2818 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢))
6036, 59imbi12d 344 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ((𝑎𝑧𝑎𝑊) → (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢)))
6130, 60sylibrd 259 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → (𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
6261ralrimdva 3133 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
63 sseq1 3956 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝑦𝑧𝑎𝑧))
6463rspceaimv 3579 . . . . . . . . 9 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
656, 62, 64syl6an 684 . . . . . . . 8 ((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
6665rexlimdva 3134 . . . . . . 7 (𝜑 → (∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
67 elfpw 9245 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦𝐴𝑦 ∈ Fin))
6867simplbi 497 . . . . . . . . . . . 12 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
6968adantl 481 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
7069ssrind 4193 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦𝑊) ⊆ (𝐴𝑊))
71 elinel2 4151 . . . . . . . . . . . 12 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
7271adantl 481 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
73 inss1 4186 . . . . . . . . . . 11 (𝑦𝑊) ⊆ 𝑦
74 ssfi 9089 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ (𝑦𝑊) ⊆ 𝑦) → (𝑦𝑊) ∈ Fin)
7572, 73, 74sylancl 586 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦𝑊) ∈ Fin)
76 elfpw 9245 . . . . . . . . . 10 ((𝑦𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin) ↔ ((𝑦𝑊) ⊆ (𝐴𝑊) ∧ (𝑦𝑊) ∈ Fin))
7770, 75, 76sylanbrc 583 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin))
7868ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑦𝐴)
79 elfpw 9245 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ↔ (𝑏 ⊆ (𝐴𝑊) ∧ 𝑏 ∈ Fin))
8079simplbi 497 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) → 𝑏 ⊆ (𝐴𝑊))
8180adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑏 ⊆ (𝐴𝑊))
8281, 1sstrdi 3943 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑏𝐴)
8378, 82unssd 4141 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (𝑦𝑏) ⊆ 𝐴)
84 elinel2 4151 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) → 𝑏 ∈ Fin)
85 unfi 9087 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ 𝑏 ∈ Fin) → (𝑦𝑏) ∈ Fin)
8672, 84, 85syl2an 596 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (𝑦𝑏) ∈ Fin)
87 elfpw 9245 . . . . . . . . . . . . 13 ((𝑦𝑏) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝑦𝑏) ⊆ 𝐴 ∧ (𝑦𝑏) ∈ Fin))
8883, 86, 87sylanbrc 583 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (𝑦𝑏) ∈ (𝒫 𝐴 ∩ Fin))
89 ssun1 4127 . . . . . . . . . . . . . . . 16 𝑦 ⊆ (𝑦𝑏)
90 id 22 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦𝑏) → 𝑧 = (𝑦𝑏))
9189, 90sseqtrrid 3974 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦𝑏) → 𝑦𝑧)
92 pm5.5 361 . . . . . . . . . . . . . . 15 (𝑦𝑧 → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
9391, 92syl 17 . . . . . . . . . . . . . 14 (𝑧 = (𝑦𝑏) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
94 reseq2 5927 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦𝑏) → (𝐹𝑧) = (𝐹 ↾ (𝑦𝑏)))
9594oveq2d 7368 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦𝑏) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑦𝑏))))
9695eleq1d 2818 . . . . . . . . . . . . . 14 (𝑧 = (𝑦𝑏) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢))
9793, 96bitrd 279 . . . . . . . . . . . . 13 (𝑧 = (𝑦𝑏) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢))
9897rspcv 3569 . . . . . . . . . . . 12 ((𝑦𝑏) ∈ (𝒫 𝐴 ∩ Fin) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢))
9988, 98syl 17 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢))
10039ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → 𝐺 ∈ CMnd)
10186adantrr 717 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝑦𝑏) ∈ Fin)
10241ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → 𝐹:𝐴𝐵)
10383adantrr 717 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝑦𝑏) ⊆ 𝐴)
104102, 103fssresd 6695 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 ↾ (𝑦𝑏)):(𝑦𝑏)⟶𝐵)
10545, 47jctir 520 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 ∈ V ∧ 0 ∈ V))
106105ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 ∈ V ∧ 0 ∈ V))
107 ressuppss 8119 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ V ∧ 0 ∈ V) → ((𝐹 ↾ (𝑦𝑏)) supp 0 ) ⊆ (𝐹 supp 0 ))
108106, 107syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹 ↾ (𝑦𝑏)) supp 0 ) ⊆ (𝐹 supp 0 ))
10950ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 supp 0 ) ⊆ 𝑊)
110108, 109sstrd 3941 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹 ↾ (𝑦𝑏)) supp 0 ) ⊆ 𝑊)
11147a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → 0 ∈ V)
112104, 101, 111fdmfifsupp 9266 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 ↾ (𝑦𝑏)) finSupp 0 )
11337, 38, 100, 101, 104, 110, 112gsumres 19827 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐺 Σg ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊)) = (𝐺 Σg (𝐹 ↾ (𝑦𝑏))))
114 resres 5945 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊) = (𝐹 ↾ ((𝑦𝑏) ∩ 𝑊))
115 indir 4235 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑏) ∩ 𝑊) = ((𝑦𝑊) ∪ (𝑏𝑊))
11681, 34sstrdi 3943 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑏𝑊)
117116adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → 𝑏𝑊)
118 dfss2 3916 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏𝑊 ↔ (𝑏𝑊) = 𝑏)
119117, 118sylib 218 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝑏𝑊) = 𝑏)
120119uneq2d 4117 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝑦𝑊) ∪ (𝑏𝑊)) = ((𝑦𝑊) ∪ 𝑏))
121 simprr 772 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝑦𝑊) ⊆ 𝑏)
122 ssequn1 4135 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝑊) ⊆ 𝑏 ↔ ((𝑦𝑊) ∪ 𝑏) = 𝑏)
123121, 122sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝑦𝑊) ∪ 𝑏) = 𝑏)
124120, 123eqtrd 2768 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝑦𝑊) ∪ (𝑏𝑊)) = 𝑏)
125115, 124eqtrid 2780 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝑦𝑏) ∩ 𝑊) = 𝑏)
126125reseq2d 5932 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 ↾ ((𝑦𝑏) ∩ 𝑊)) = (𝐹𝑏))
127114, 126eqtrid 2780 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊) = (𝐹𝑏))
128117resabs1d 5961 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹𝑊) ↾ 𝑏) = (𝐹𝑏))
129127, 128eqtr4d 2771 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊) = ((𝐹𝑊) ↾ 𝑏))
130129oveq2d 7368 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐺 Σg ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊)) = (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)))
131113, 130eqtr3d 2770 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) = (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)))
132131eleq1d 2818 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢 ↔ (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢))
133132biimpd 229 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢))
134133expr 456 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → ((𝑦𝑊) ⊆ 𝑏 → ((𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
135134com23 86 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢 → ((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
13699, 135syld 47 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → ((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
137136ralrimdva 3133 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → ∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
138 sseq1 3956 . . . . . . . . . 10 (𝑎 = (𝑦𝑊) → (𝑎𝑏 ↔ (𝑦𝑊) ⊆ 𝑏))
139138rspceaimv 3579 . . . . . . . . 9 (((𝑦𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ ∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢))
14077, 137, 139syl6an 684 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
141140rexlimdva 3134 . . . . . . 7 (𝜑 → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
14266, 141impbid 212 . . . . . 6 (𝜑 → (∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) ↔ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
143142imbi2d 340 . . . . 5 (𝜑 → ((𝑥𝑢 → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)) ↔ (𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))))
144143ralbidv 3156 . . . 4 (𝜑 → (∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))))
145144anbi2d 630 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢))) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))))
146 eqid 2733 . . . 4 (TopOpen‘𝐺) = (TopOpen‘𝐺)
147 eqid 2733 . . . 4 (𝒫 (𝐴𝑊) ∩ Fin) = (𝒫 (𝐴𝑊) ∩ Fin)
148 tsmsres.2 . . . 4 (𝜑𝐺 ∈ TopSp)
149 inex1g 5259 . . . . 5 (𝐴𝑉 → (𝐴𝑊) ∈ V)
15044, 149syl 17 . . . 4 (𝜑 → (𝐴𝑊) ∈ V)
151 fssres 6694 . . . . . 6 ((𝐹:𝐴𝐵 ∧ (𝐴𝑊) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵)
15241, 1, 151sylancl 586 . . . . 5 (𝜑 → (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵)
153 resres 5945 . . . . . . 7 ((𝐹𝐴) ↾ 𝑊) = (𝐹 ↾ (𝐴𝑊))
154 ffn 6656 . . . . . . . . 9 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
155 fnresdm 6605 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
15641, 154, 1553syl 18 . . . . . . . 8 (𝜑 → (𝐹𝐴) = 𝐹)
157156reseq1d 5931 . . . . . . 7 (𝜑 → ((𝐹𝐴) ↾ 𝑊) = (𝐹𝑊))
158153, 157eqtr3id 2782 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐴𝑊)) = (𝐹𝑊))
159158feq1d 6638 . . . . 5 (𝜑 → ((𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵 ↔ (𝐹𝑊):(𝐴𝑊)⟶𝐵))
160152, 159mpbid 232 . . . 4 (𝜑 → (𝐹𝑊):(𝐴𝑊)⟶𝐵)
16137, 146, 147, 39, 148, 150, 160eltsms 24049 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums (𝐹𝑊)) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))))
162 eqid 2733 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
16337, 146, 162, 39, 148, 44, 41eltsms 24049 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))))
164145, 161, 1633bitr4d 311 . 2 (𝜑 → (𝑥 ∈ (𝐺 tsums (𝐹𝑊)) ↔ 𝑥 ∈ (𝐺 tsums 𝐹)))
165164eqrdv 2731 1 (𝜑 → (𝐺 tsums (𝐹𝑊)) = (𝐺 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  Vcvv 3437  cun 3896  cin 3897  wss 3898  𝒫 cpw 4549  cres 5621   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352   supp csupp 8096  Fincfn 8875  Basecbs 17122  TopOpenctopn 17327  0gc0g 17345   Σg cgsu 17346  CMndccmn 19694  TopSpctps 22848   tsums ctsu 24042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-0g 17347  df-gsum 17348  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-cntz 19231  df-cmn 19696  df-fbas 21290  df-fg 21291  df-top 22810  df-topon 22827  df-topsp 22849  df-ntr 22936  df-nei 23014  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-tsms 24043
This theorem is referenced by:  tsmssplit  24068  esumss  34106
  Copyright terms: Public domain W3C validator