MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscpwex Structured version   Visualization version   GIF version

Theorem sscpwex 17859
Description: An analogue of pwex 5380 for the subcategory subset relation: The collection of subcategory subsets of a given set 𝐽 is a set. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
sscpwex {cat 𝐽} ∈ V
Distinct variable group:   ,𝐽

Proof of Theorem sscpwex
Dummy variables 𝑠 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7464 . 2 (𝒫 ran 𝐽pm dom 𝐽) ∈ V
2 brssc 17858 . . . 4 (cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
3 simpl 482 . . . . . . . . . 10 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → 𝐽 Fn (𝑡 × 𝑡))
4 vex 3484 . . . . . . . . . . 11 𝑡 ∈ V
54, 4xpex 7773 . . . . . . . . . 10 (𝑡 × 𝑡) ∈ V
6 fnex 7237 . . . . . . . . . 10 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑡 × 𝑡) ∈ V) → 𝐽 ∈ V)
73, 5, 6sylancl 586 . . . . . . . . 9 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → 𝐽 ∈ V)
8 rnexg 7924 . . . . . . . . 9 (𝐽 ∈ V → ran 𝐽 ∈ V)
9 uniexg 7760 . . . . . . . . 9 (ran 𝐽 ∈ V → ran 𝐽 ∈ V)
10 pwexg 5378 . . . . . . . . 9 ( ran 𝐽 ∈ V → 𝒫 ran 𝐽 ∈ V)
117, 8, 9, 104syl 19 . . . . . . . 8 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → 𝒫 ran 𝐽 ∈ V)
12 fndm 6671 . . . . . . . . . 10 (𝐽 Fn (𝑡 × 𝑡) → dom 𝐽 = (𝑡 × 𝑡))
1312adantr 480 . . . . . . . . 9 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → dom 𝐽 = (𝑡 × 𝑡))
1413, 5eqeltrdi 2849 . . . . . . . 8 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → dom 𝐽 ∈ V)
15 ss2ixp 8950 . . . . . . . . . . 11 (∀𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) ⊆ 𝒫 ran 𝐽X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) ⊆ X𝑥 ∈ (𝑠 × 𝑠)𝒫 ran 𝐽)
16 fvssunirn 6939 . . . . . . . . . . . . 13 (𝐽𝑥) ⊆ ran 𝐽
1716sspwi 4612 . . . . . . . . . . . 12 𝒫 (𝐽𝑥) ⊆ 𝒫 ran 𝐽
1817a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (𝑠 × 𝑠) → 𝒫 (𝐽𝑥) ⊆ 𝒫 ran 𝐽)
1915, 18mprg 3067 . . . . . . . . . 10 X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) ⊆ X𝑥 ∈ (𝑠 × 𝑠)𝒫 ran 𝐽
20 simprr 773 . . . . . . . . . 10 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))
2119, 20sselid 3981 . . . . . . . . 9 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → X𝑥 ∈ (𝑠 × 𝑠)𝒫 ran 𝐽)
22 vex 3484 . . . . . . . . . 10 ∈ V
2322elixpconst 8945 . . . . . . . . 9 (X𝑥 ∈ (𝑠 × 𝑠)𝒫 ran 𝐽:(𝑠 × 𝑠)⟶𝒫 ran 𝐽)
2421, 23sylib 218 . . . . . . . 8 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → :(𝑠 × 𝑠)⟶𝒫 ran 𝐽)
25 elpwi 4607 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 𝑡𝑠𝑡)
2625ad2antrl 728 . . . . . . . . . 10 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → 𝑠𝑡)
27 xpss12 5700 . . . . . . . . . 10 ((𝑠𝑡𝑠𝑡) → (𝑠 × 𝑠) ⊆ (𝑡 × 𝑡))
2826, 26, 27syl2anc 584 . . . . . . . . 9 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → (𝑠 × 𝑠) ⊆ (𝑡 × 𝑡))
2928, 13sseqtrrd 4021 . . . . . . . 8 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → (𝑠 × 𝑠) ⊆ dom 𝐽)
30 elpm2r 8885 . . . . . . . 8 (((𝒫 ran 𝐽 ∈ V ∧ dom 𝐽 ∈ V) ∧ (:(𝑠 × 𝑠)⟶𝒫 ran 𝐽 ∧ (𝑠 × 𝑠) ⊆ dom 𝐽)) → ∈ (𝒫 ran 𝐽pm dom 𝐽))
3111, 14, 24, 29, 30syl22anc 839 . . . . . . 7 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → ∈ (𝒫 ran 𝐽pm dom 𝐽))
3231rexlimdvaa 3156 . . . . . 6 (𝐽 Fn (𝑡 × 𝑡) → (∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → ∈ (𝒫 ran 𝐽pm dom 𝐽)))
3332imp 406 . . . . 5 ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → ∈ (𝒫 ran 𝐽pm dom 𝐽))
3433exlimiv 1930 . . . 4 (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → ∈ (𝒫 ran 𝐽pm dom 𝐽))
352, 34sylbi 217 . . 3 (cat 𝐽 ∈ (𝒫 ran 𝐽pm dom 𝐽))
3635abssi 4070 . 2 {cat 𝐽} ⊆ (𝒫 ran 𝐽pm dom 𝐽)
371, 36ssexi 5322 1 {cat 𝐽} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2108  {cab 2714  wrex 3070  Vcvv 3480  wss 3951  𝒫 cpw 4600   cuni 4907   class class class wbr 5143   × cxp 5683  dom cdm 5685  ran crn 5686   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  pm cpm 8867  Xcixp 8937  cat cssc 17851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-pm 8869  df-ixp 8938  df-ssc 17854
This theorem is referenced by:  issubc  17880
  Copyright terms: Public domain W3C validator