Step | Hyp | Ref
| Expression |
1 | | ovex 7438 |
. 2
β’
(π« βͺ ran π½ βpm dom π½) β V |
2 | | brssc 17757 |
. . . 4
β’ (β βcat π½ β βπ‘(π½ Fn (π‘ Γ π‘) β§ βπ β π« π‘β β Xπ₯ β (π Γ π )π« (π½βπ₯))) |
3 | | simpl 483 |
. . . . . . . . . 10
β’ ((π½ Fn (π‘ Γ π‘) β§ (π β π« π‘ β§ β β Xπ₯ β (π Γ π )π« (π½βπ₯))) β π½ Fn (π‘ Γ π‘)) |
4 | | vex 3478 |
. . . . . . . . . . 11
β’ π‘ β V |
5 | 4, 4 | xpex 7736 |
. . . . . . . . . 10
β’ (π‘ Γ π‘) β V |
6 | | fnex 7215 |
. . . . . . . . . 10
β’ ((π½ Fn (π‘ Γ π‘) β§ (π‘ Γ π‘) β V) β π½ β V) |
7 | 3, 5, 6 | sylancl 586 |
. . . . . . . . 9
β’ ((π½ Fn (π‘ Γ π‘) β§ (π β π« π‘ β§ β β Xπ₯ β (π Γ π )π« (π½βπ₯))) β π½ β V) |
8 | | rnexg 7891 |
. . . . . . . . 9
β’ (π½ β V β ran π½ β V) |
9 | | uniexg 7726 |
. . . . . . . . 9
β’ (ran
π½ β V β βͺ ran π½ β V) |
10 | | pwexg 5375 |
. . . . . . . . 9
β’ (βͺ ran π½ β V β π« βͺ ran π½ β V) |
11 | 7, 8, 9, 10 | 4syl 19 |
. . . . . . . 8
β’ ((π½ Fn (π‘ Γ π‘) β§ (π β π« π‘ β§ β β Xπ₯ β (π Γ π )π« (π½βπ₯))) β π« βͺ ran π½ β V) |
12 | | fndm 6649 |
. . . . . . . . . 10
β’ (π½ Fn (π‘ Γ π‘) β dom π½ = (π‘ Γ π‘)) |
13 | 12 | adantr 481 |
. . . . . . . . 9
β’ ((π½ Fn (π‘ Γ π‘) β§ (π β π« π‘ β§ β β Xπ₯ β (π Γ π )π« (π½βπ₯))) β dom π½ = (π‘ Γ π‘)) |
14 | 13, 5 | eqeltrdi 2841 |
. . . . . . . 8
β’ ((π½ Fn (π‘ Γ π‘) β§ (π β π« π‘ β§ β β Xπ₯ β (π Γ π )π« (π½βπ₯))) β dom π½ β V) |
15 | | ss2ixp 8900 |
. . . . . . . . . . 11
β’
(βπ₯ β
(π Γ π )π« (π½βπ₯) β π« βͺ ran π½ β Xπ₯ β (π Γ π )π« (π½βπ₯) β Xπ₯ β (π Γ π )π« βͺ ran
π½) |
16 | | fvssunirn 6921 |
. . . . . . . . . . . . 13
β’ (π½βπ₯) β βͺ ran
π½ |
17 | 16 | sspwi 4613 |
. . . . . . . . . . . 12
β’ π«
(π½βπ₯) β π« βͺ ran π½ |
18 | 17 | a1i 11 |
. . . . . . . . . . 11
β’ (π₯ β (π Γ π ) β π« (π½βπ₯) β π« βͺ ran π½) |
19 | 15, 18 | mprg 3067 |
. . . . . . . . . 10
β’ Xπ₯ β
(π Γ π )π« (π½βπ₯) β Xπ₯ β (π Γ π )π« βͺ ran
π½ |
20 | | simprr 771 |
. . . . . . . . . 10
β’ ((π½ Fn (π‘ Γ π‘) β§ (π β π« π‘ β§ β β Xπ₯ β (π Γ π )π« (π½βπ₯))) β β β Xπ₯ β (π Γ π )π« (π½βπ₯)) |
21 | 19, 20 | sselid 3979 |
. . . . . . . . 9
β’ ((π½ Fn (π‘ Γ π‘) β§ (π β π« π‘ β§ β β Xπ₯ β (π Γ π )π« (π½βπ₯))) β β β Xπ₯ β (π Γ π )π« βͺ ran
π½) |
22 | | vex 3478 |
. . . . . . . . . 10
β’ β β V |
23 | 22 | elixpconst 8895 |
. . . . . . . . 9
β’ (β β Xπ₯ β
(π Γ π )π« βͺ ran π½ β β:(π Γ π )βΆπ« βͺ ran π½) |
24 | 21, 23 | sylib 217 |
. . . . . . . 8
β’ ((π½ Fn (π‘ Γ π‘) β§ (π β π« π‘ β§ β β Xπ₯ β (π Γ π )π« (π½βπ₯))) β β:(π Γ π )βΆπ« βͺ ran π½) |
25 | | elpwi 4608 |
. . . . . . . . . . 11
β’ (π β π« π‘ β π β π‘) |
26 | 25 | ad2antrl 726 |
. . . . . . . . . 10
β’ ((π½ Fn (π‘ Γ π‘) β§ (π β π« π‘ β§ β β Xπ₯ β (π Γ π )π« (π½βπ₯))) β π β π‘) |
27 | | xpss12 5690 |
. . . . . . . . . 10
β’ ((π β π‘ β§ π β π‘) β (π Γ π ) β (π‘ Γ π‘)) |
28 | 26, 26, 27 | syl2anc 584 |
. . . . . . . . 9
β’ ((π½ Fn (π‘ Γ π‘) β§ (π β π« π‘ β§ β β Xπ₯ β (π Γ π )π« (π½βπ₯))) β (π Γ π ) β (π‘ Γ π‘)) |
29 | 28, 13 | sseqtrrd 4022 |
. . . . . . . 8
β’ ((π½ Fn (π‘ Γ π‘) β§ (π β π« π‘ β§ β β Xπ₯ β (π Γ π )π« (π½βπ₯))) β (π Γ π ) β dom π½) |
30 | | elpm2r 8835 |
. . . . . . . 8
β’
(((π« βͺ ran π½ β V β§ dom π½ β V) β§ (β:(π Γ π )βΆπ« βͺ ran π½ β§ (π Γ π ) β dom π½)) β β β (π« βͺ ran π½ βpm dom π½)) |
31 | 11, 14, 24, 29, 30 | syl22anc 837 |
. . . . . . 7
β’ ((π½ Fn (π‘ Γ π‘) β§ (π β π« π‘ β§ β β Xπ₯ β (π Γ π )π« (π½βπ₯))) β β β (π« βͺ ran π½ βpm dom π½)) |
32 | 31 | rexlimdvaa 3156 |
. . . . . 6
β’ (π½ Fn (π‘ Γ π‘) β (βπ β π« π‘β β Xπ₯ β (π Γ π )π« (π½βπ₯) β β β (π« βͺ ran π½ βpm dom π½))) |
33 | 32 | imp 407 |
. . . . 5
β’ ((π½ Fn (π‘ Γ π‘) β§ βπ β π« π‘β β Xπ₯ β (π Γ π )π« (π½βπ₯)) β β β (π« βͺ ran π½ βpm dom π½)) |
34 | 33 | exlimiv 1933 |
. . . 4
β’
(βπ‘(π½ Fn (π‘ Γ π‘) β§ βπ β π« π‘β β Xπ₯ β (π Γ π )π« (π½βπ₯)) β β β (π« βͺ ran π½ βpm dom π½)) |
35 | 2, 34 | sylbi 216 |
. . 3
β’ (β βcat π½ β β β (π« βͺ ran π½ βpm dom π½)) |
36 | 35 | abssi 4066 |
. 2
β’ {β β£ β βcat π½} β (π« βͺ ran π½ βpm dom π½) |
37 | 1, 36 | ssexi 5321 |
1
β’ {β β£ β βcat π½} β V |