MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscpwex Structured version   Visualization version   GIF version

Theorem sscpwex 16827
Description: An analogue of pwex 5080 for the subcategory subset relation: The collection of subcategory subsets of a given set 𝐽 is a set. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
sscpwex {cat 𝐽} ∈ V
Distinct variable group:   ,𝐽

Proof of Theorem sscpwex
Dummy variables 𝑠 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6937 . 2 (𝒫 ran 𝐽pm dom 𝐽) ∈ V
2 brssc 16826 . . . 4 (cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
3 simpl 476 . . . . . . . . . 10 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → 𝐽 Fn (𝑡 × 𝑡))
4 vex 3417 . . . . . . . . . . 11 𝑡 ∈ V
54, 4xpex 7223 . . . . . . . . . 10 (𝑡 × 𝑡) ∈ V
6 fnex 6737 . . . . . . . . . 10 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑡 × 𝑡) ∈ V) → 𝐽 ∈ V)
73, 5, 6sylancl 580 . . . . . . . . 9 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → 𝐽 ∈ V)
8 rnexg 7359 . . . . . . . . 9 (𝐽 ∈ V → ran 𝐽 ∈ V)
9 uniexg 7215 . . . . . . . . 9 (ran 𝐽 ∈ V → ran 𝐽 ∈ V)
10 pwexg 5078 . . . . . . . . 9 ( ran 𝐽 ∈ V → 𝒫 ran 𝐽 ∈ V)
117, 8, 9, 104syl 19 . . . . . . . 8 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → 𝒫 ran 𝐽 ∈ V)
12 fndm 6223 . . . . . . . . . 10 (𝐽 Fn (𝑡 × 𝑡) → dom 𝐽 = (𝑡 × 𝑡))
1312adantr 474 . . . . . . . . 9 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → dom 𝐽 = (𝑡 × 𝑡))
1413, 5syl6eqel 2914 . . . . . . . 8 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → dom 𝐽 ∈ V)
15 ss2ixp 8188 . . . . . . . . . . 11 (∀𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) ⊆ 𝒫 ran 𝐽X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) ⊆ X𝑥 ∈ (𝑠 × 𝑠)𝒫 ran 𝐽)
16 fvssunirn 6462 . . . . . . . . . . . . 13 (𝐽𝑥) ⊆ ran 𝐽
17 sspwb 5138 . . . . . . . . . . . . 13 ((𝐽𝑥) ⊆ ran 𝐽 ↔ 𝒫 (𝐽𝑥) ⊆ 𝒫 ran 𝐽)
1816, 17mpbi 222 . . . . . . . . . . . 12 𝒫 (𝐽𝑥) ⊆ 𝒫 ran 𝐽
1918a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (𝑠 × 𝑠) → 𝒫 (𝐽𝑥) ⊆ 𝒫 ran 𝐽)
2015, 19mprg 3135 . . . . . . . . . 10 X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) ⊆ X𝑥 ∈ (𝑠 × 𝑠)𝒫 ran 𝐽
21 simprr 789 . . . . . . . . . 10 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))
2220, 21sseldi 3825 . . . . . . . . 9 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → X𝑥 ∈ (𝑠 × 𝑠)𝒫 ran 𝐽)
23 vex 3417 . . . . . . . . . 10 ∈ V
2423elixpconst 8183 . . . . . . . . 9 (X𝑥 ∈ (𝑠 × 𝑠)𝒫 ran 𝐽:(𝑠 × 𝑠)⟶𝒫 ran 𝐽)
2522, 24sylib 210 . . . . . . . 8 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → :(𝑠 × 𝑠)⟶𝒫 ran 𝐽)
26 elpwi 4388 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 𝑡𝑠𝑡)
2726ad2antrl 719 . . . . . . . . . 10 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → 𝑠𝑡)
28 xpss12 5357 . . . . . . . . . 10 ((𝑠𝑡𝑠𝑡) → (𝑠 × 𝑠) ⊆ (𝑡 × 𝑡))
2927, 27, 28syl2anc 579 . . . . . . . . 9 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → (𝑠 × 𝑠) ⊆ (𝑡 × 𝑡))
3029, 13sseqtr4d 3867 . . . . . . . 8 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → (𝑠 × 𝑠) ⊆ dom 𝐽)
31 elpm2r 8140 . . . . . . . 8 (((𝒫 ran 𝐽 ∈ V ∧ dom 𝐽 ∈ V) ∧ (:(𝑠 × 𝑠)⟶𝒫 ran 𝐽 ∧ (𝑠 × 𝑠) ⊆ dom 𝐽)) → ∈ (𝒫 ran 𝐽pm dom 𝐽))
3211, 14, 25, 30, 31syl22anc 872 . . . . . . 7 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → ∈ (𝒫 ran 𝐽pm dom 𝐽))
3332rexlimdvaa 3241 . . . . . 6 (𝐽 Fn (𝑡 × 𝑡) → (∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → ∈ (𝒫 ran 𝐽pm dom 𝐽)))
3433imp 397 . . . . 5 ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → ∈ (𝒫 ran 𝐽pm dom 𝐽))
3534exlimiv 2029 . . . 4 (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → ∈ (𝒫 ran 𝐽pm dom 𝐽))
362, 35sylbi 209 . . 3 (cat 𝐽 ∈ (𝒫 ran 𝐽pm dom 𝐽))
3736abssi 3902 . 2 {cat 𝐽} ⊆ (𝒫 ran 𝐽pm dom 𝐽)
381, 37ssexi 5028 1 {cat 𝐽} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 386   = wceq 1656  wex 1878  wcel 2164  {cab 2811  wrex 3118  Vcvv 3414  wss 3798  𝒫 cpw 4378   cuni 4658   class class class wbr 4873   × cxp 5340  dom cdm 5342  ran crn 5343   Fn wfn 6118  wf 6119  cfv 6123  (class class class)co 6905  pm cpm 8123  Xcixp 8175  cat cssc 16819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-pm 8125  df-ixp 8176  df-ssc 16822
This theorem is referenced by:  issubc  16847
  Copyright terms: Public domain W3C validator