![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwdom | Structured version Visualization version GIF version |
Description: Injection of sets implies injection on power sets. (Contributed by Mario Carneiro, 9-Apr-2015.) |
Ref | Expression |
---|---|
pwdom | ⊢ (𝐴 ≼ 𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4617 | . . 3 ⊢ (𝐴 = ∅ → 𝒫 𝐴 = 𝒫 ∅) | |
2 | 1 | breq1d 5158 | . 2 ⊢ (𝐴 = ∅ → (𝒫 𝐴 ≼ 𝒫 𝐵 ↔ 𝒫 ∅ ≼ 𝒫 𝐵)) |
3 | reldom 8969 | . . . . . . 7 ⊢ Rel ≼ | |
4 | 3 | brrelex1i 5734 | . . . . . 6 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
5 | 0sdomg 9128 | . . . . . 6 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐴 ≼ 𝐵 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
7 | 6 | biimpar 477 | . . . 4 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅) → ∅ ≺ 𝐴) |
8 | simpl 482 | . . . 4 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐴 ≼ 𝐵) | |
9 | fodomr 9152 | . . . 4 ⊢ ((∅ ≺ 𝐴 ∧ 𝐴 ≼ 𝐵) → ∃𝑓 𝑓:𝐵–onto→𝐴) | |
10 | 7, 8, 9 | syl2anc 583 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:𝐵–onto→𝐴) |
11 | vex 3475 | . . . . 5 ⊢ 𝑓 ∈ V | |
12 | fopwdom 9104 | . . . . 5 ⊢ ((𝑓 ∈ V ∧ 𝑓:𝐵–onto→𝐴) → 𝒫 𝐴 ≼ 𝒫 𝐵) | |
13 | 11, 12 | mpan 689 | . . . 4 ⊢ (𝑓:𝐵–onto→𝐴 → 𝒫 𝐴 ≼ 𝒫 𝐵) |
14 | 13 | exlimiv 1926 | . . 3 ⊢ (∃𝑓 𝑓:𝐵–onto→𝐴 → 𝒫 𝐴 ≼ 𝒫 𝐵) |
15 | 10, 14 | syl 17 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅) → 𝒫 𝐴 ≼ 𝒫 𝐵) |
16 | 3 | brrelex2i 5735 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
17 | 16 | pwexd 5379 | . . 3 ⊢ (𝐴 ≼ 𝐵 → 𝒫 𝐵 ∈ V) |
18 | 0ss 4397 | . . . 4 ⊢ ∅ ⊆ 𝐵 | |
19 | 18 | sspwi 4615 | . . 3 ⊢ 𝒫 ∅ ⊆ 𝒫 𝐵 |
20 | ssdomg 9020 | . . 3 ⊢ (𝒫 𝐵 ∈ V → (𝒫 ∅ ⊆ 𝒫 𝐵 → 𝒫 ∅ ≼ 𝒫 𝐵)) | |
21 | 17, 19, 20 | mpisyl 21 | . 2 ⊢ (𝐴 ≼ 𝐵 → 𝒫 ∅ ≼ 𝒫 𝐵) |
22 | 2, 15, 21 | pm2.61ne 3024 | 1 ⊢ (𝐴 ≼ 𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ≠ wne 2937 Vcvv 3471 ⊆ wss 3947 ∅c0 4323 𝒫 cpw 4603 class class class wbr 5148 –onto→wfo 6546 ≼ cdom 8961 ≺ csdm 8962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-en 8964 df-dom 8965 df-sdom 8966 |
This theorem is referenced by: djulepw 10215 gchpwdom 10693 gchaclem 10701 2ndcredom 23353 |
Copyright terms: Public domain | W3C validator |