MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwdom Structured version   Visualization version   GIF version

Theorem pwdom 9125
Description: Injection of sets implies injection on power sets. (Contributed by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
pwdom (𝐴𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵)

Proof of Theorem pwdom
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 pweq 4615 . . 3 (𝐴 = ∅ → 𝒫 𝐴 = 𝒫 ∅)
21breq1d 5157 . 2 (𝐴 = ∅ → (𝒫 𝐴 ≼ 𝒫 𝐵 ↔ 𝒫 ∅ ≼ 𝒫 𝐵))
3 reldom 8941 . . . . . . 7 Rel ≼
43brrelex1i 5730 . . . . . 6 (𝐴𝐵𝐴 ∈ V)
5 0sdomg 9100 . . . . . 6 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
64, 5syl 17 . . . . 5 (𝐴𝐵 → (∅ ≺ 𝐴𝐴 ≠ ∅))
76biimpar 478 . . . 4 ((𝐴𝐵𝐴 ≠ ∅) → ∅ ≺ 𝐴)
8 simpl 483 . . . 4 ((𝐴𝐵𝐴 ≠ ∅) → 𝐴𝐵)
9 fodomr 9124 . . . 4 ((∅ ≺ 𝐴𝐴𝐵) → ∃𝑓 𝑓:𝐵onto𝐴)
107, 8, 9syl2anc 584 . . 3 ((𝐴𝐵𝐴 ≠ ∅) → ∃𝑓 𝑓:𝐵onto𝐴)
11 vex 3478 . . . . 5 𝑓 ∈ V
12 fopwdom 9076 . . . . 5 ((𝑓 ∈ V ∧ 𝑓:𝐵onto𝐴) → 𝒫 𝐴 ≼ 𝒫 𝐵)
1311, 12mpan 688 . . . 4 (𝑓:𝐵onto𝐴 → 𝒫 𝐴 ≼ 𝒫 𝐵)
1413exlimiv 1933 . . 3 (∃𝑓 𝑓:𝐵onto𝐴 → 𝒫 𝐴 ≼ 𝒫 𝐵)
1510, 14syl 17 . 2 ((𝐴𝐵𝐴 ≠ ∅) → 𝒫 𝐴 ≼ 𝒫 𝐵)
163brrelex2i 5731 . . . 4 (𝐴𝐵𝐵 ∈ V)
1716pwexd 5376 . . 3 (𝐴𝐵 → 𝒫 𝐵 ∈ V)
18 0ss 4395 . . . 4 ∅ ⊆ 𝐵
1918sspwi 4613 . . 3 𝒫 ∅ ⊆ 𝒫 𝐵
20 ssdomg 8992 . . 3 (𝒫 𝐵 ∈ V → (𝒫 ∅ ⊆ 𝒫 𝐵 → 𝒫 ∅ ≼ 𝒫 𝐵))
2117, 19, 20mpisyl 21 . 2 (𝐴𝐵 → 𝒫 ∅ ≼ 𝒫 𝐵)
222, 15, 21pm2.61ne 3027 1 (𝐴𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2940  Vcvv 3474  wss 3947  c0 4321  𝒫 cpw 4601   class class class wbr 5147  ontowfo 6538  cdom 8933  csdm 8934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-en 8936  df-dom 8937  df-sdom 8938
This theorem is referenced by:  djulepw  10183  gchpwdom  10661  gchaclem  10669  2ndcredom  22945
  Copyright terms: Public domain W3C validator