![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwdom | Structured version Visualization version GIF version |
Description: Injection of sets implies injection on power sets. (Contributed by Mario Carneiro, 9-Apr-2015.) |
Ref | Expression |
---|---|
pwdom | ⊢ (𝐴 ≼ 𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4636 | . . 3 ⊢ (𝐴 = ∅ → 𝒫 𝐴 = 𝒫 ∅) | |
2 | 1 | breq1d 5176 | . 2 ⊢ (𝐴 = ∅ → (𝒫 𝐴 ≼ 𝒫 𝐵 ↔ 𝒫 ∅ ≼ 𝒫 𝐵)) |
3 | reldom 9009 | . . . . . . 7 ⊢ Rel ≼ | |
4 | 3 | brrelex1i 5756 | . . . . . 6 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
5 | 0sdomg 9170 | . . . . . 6 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐴 ≼ 𝐵 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
7 | 6 | biimpar 477 | . . . 4 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅) → ∅ ≺ 𝐴) |
8 | simpl 482 | . . . 4 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐴 ≼ 𝐵) | |
9 | fodomr 9194 | . . . 4 ⊢ ((∅ ≺ 𝐴 ∧ 𝐴 ≼ 𝐵) → ∃𝑓 𝑓:𝐵–onto→𝐴) | |
10 | 7, 8, 9 | syl2anc 583 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:𝐵–onto→𝐴) |
11 | vex 3492 | . . . . 5 ⊢ 𝑓 ∈ V | |
12 | fopwdom 9146 | . . . . 5 ⊢ ((𝑓 ∈ V ∧ 𝑓:𝐵–onto→𝐴) → 𝒫 𝐴 ≼ 𝒫 𝐵) | |
13 | 11, 12 | mpan 689 | . . . 4 ⊢ (𝑓:𝐵–onto→𝐴 → 𝒫 𝐴 ≼ 𝒫 𝐵) |
14 | 13 | exlimiv 1929 | . . 3 ⊢ (∃𝑓 𝑓:𝐵–onto→𝐴 → 𝒫 𝐴 ≼ 𝒫 𝐵) |
15 | 10, 14 | syl 17 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅) → 𝒫 𝐴 ≼ 𝒫 𝐵) |
16 | 3 | brrelex2i 5757 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
17 | 16 | pwexd 5397 | . . 3 ⊢ (𝐴 ≼ 𝐵 → 𝒫 𝐵 ∈ V) |
18 | 0ss 4423 | . . . 4 ⊢ ∅ ⊆ 𝐵 | |
19 | 18 | sspwi 4634 | . . 3 ⊢ 𝒫 ∅ ⊆ 𝒫 𝐵 |
20 | ssdomg 9060 | . . 3 ⊢ (𝒫 𝐵 ∈ V → (𝒫 ∅ ⊆ 𝒫 𝐵 → 𝒫 ∅ ≼ 𝒫 𝐵)) | |
21 | 17, 19, 20 | mpisyl 21 | . 2 ⊢ (𝐴 ≼ 𝐵 → 𝒫 ∅ ≼ 𝒫 𝐵) |
22 | 2, 15, 21 | pm2.61ne 3033 | 1 ⊢ (𝐴 ≼ 𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 class class class wbr 5166 –onto→wfo 6571 ≼ cdom 9001 ≺ csdm 9002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-en 9004 df-dom 9005 df-sdom 9006 |
This theorem is referenced by: djulepw 10262 gchpwdom 10739 gchaclem 10747 2ndcredom 23479 |
Copyright terms: Public domain | W3C validator |