Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwdom | Structured version Visualization version GIF version |
Description: Injection of sets implies injection on power sets. (Contributed by Mario Carneiro, 9-Apr-2015.) |
Ref | Expression |
---|---|
pwdom | ⊢ (𝐴 ≼ 𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4549 | . . 3 ⊢ (𝐴 = ∅ → 𝒫 𝐴 = 𝒫 ∅) | |
2 | 1 | breq1d 5084 | . 2 ⊢ (𝐴 = ∅ → (𝒫 𝐴 ≼ 𝒫 𝐵 ↔ 𝒫 ∅ ≼ 𝒫 𝐵)) |
3 | reldom 8739 | . . . . . . 7 ⊢ Rel ≼ | |
4 | 3 | brrelex1i 5643 | . . . . . 6 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
5 | 0sdomg 8891 | . . . . . 6 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐴 ≼ 𝐵 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
7 | 6 | biimpar 478 | . . . 4 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅) → ∅ ≺ 𝐴) |
8 | simpl 483 | . . . 4 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐴 ≼ 𝐵) | |
9 | fodomr 8915 | . . . 4 ⊢ ((∅ ≺ 𝐴 ∧ 𝐴 ≼ 𝐵) → ∃𝑓 𝑓:𝐵–onto→𝐴) | |
10 | 7, 8, 9 | syl2anc 584 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:𝐵–onto→𝐴) |
11 | vex 3436 | . . . . 5 ⊢ 𝑓 ∈ V | |
12 | fopwdom 8867 | . . . . 5 ⊢ ((𝑓 ∈ V ∧ 𝑓:𝐵–onto→𝐴) → 𝒫 𝐴 ≼ 𝒫 𝐵) | |
13 | 11, 12 | mpan 687 | . . . 4 ⊢ (𝑓:𝐵–onto→𝐴 → 𝒫 𝐴 ≼ 𝒫 𝐵) |
14 | 13 | exlimiv 1933 | . . 3 ⊢ (∃𝑓 𝑓:𝐵–onto→𝐴 → 𝒫 𝐴 ≼ 𝒫 𝐵) |
15 | 10, 14 | syl 17 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅) → 𝒫 𝐴 ≼ 𝒫 𝐵) |
16 | 3 | brrelex2i 5644 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
17 | 16 | pwexd 5302 | . . 3 ⊢ (𝐴 ≼ 𝐵 → 𝒫 𝐵 ∈ V) |
18 | 0ss 4330 | . . . 4 ⊢ ∅ ⊆ 𝐵 | |
19 | 18 | sspwi 4547 | . . 3 ⊢ 𝒫 ∅ ⊆ 𝒫 𝐵 |
20 | ssdomg 8786 | . . 3 ⊢ (𝒫 𝐵 ∈ V → (𝒫 ∅ ⊆ 𝒫 𝐵 → 𝒫 ∅ ≼ 𝒫 𝐵)) | |
21 | 17, 19, 20 | mpisyl 21 | . 2 ⊢ (𝐴 ≼ 𝐵 → 𝒫 ∅ ≼ 𝒫 𝐵) |
22 | 2, 15, 21 | pm2.61ne 3030 | 1 ⊢ (𝐴 ≼ 𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 class class class wbr 5074 –onto→wfo 6431 ≼ cdom 8731 ≺ csdm 8732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-en 8734 df-dom 8735 df-sdom 8736 |
This theorem is referenced by: djulepw 9948 gchpwdom 10426 gchaclem 10434 2ndcredom 22601 |
Copyright terms: Public domain | W3C validator |