| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwdom | Structured version Visualization version GIF version | ||
| Description: Injection of sets implies injection on power sets. (Contributed by Mario Carneiro, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| pwdom | ⊢ (𝐴 ≼ 𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4577 | . . 3 ⊢ (𝐴 = ∅ → 𝒫 𝐴 = 𝒫 ∅) | |
| 2 | 1 | breq1d 5117 | . 2 ⊢ (𝐴 = ∅ → (𝒫 𝐴 ≼ 𝒫 𝐵 ↔ 𝒫 ∅ ≼ 𝒫 𝐵)) |
| 3 | reldom 8924 | . . . . . . 7 ⊢ Rel ≼ | |
| 4 | 3 | brrelex1i 5694 | . . . . . 6 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
| 5 | 0sdomg 9070 | . . . . . 6 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐴 ≼ 𝐵 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
| 7 | 6 | biimpar 477 | . . . 4 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅) → ∅ ≺ 𝐴) |
| 8 | simpl 482 | . . . 4 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐴 ≼ 𝐵) | |
| 9 | fodomr 9092 | . . . 4 ⊢ ((∅ ≺ 𝐴 ∧ 𝐴 ≼ 𝐵) → ∃𝑓 𝑓:𝐵–onto→𝐴) | |
| 10 | 7, 8, 9 | syl2anc 584 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:𝐵–onto→𝐴) |
| 11 | vex 3451 | . . . . 5 ⊢ 𝑓 ∈ V | |
| 12 | fopwdom 9049 | . . . . 5 ⊢ ((𝑓 ∈ V ∧ 𝑓:𝐵–onto→𝐴) → 𝒫 𝐴 ≼ 𝒫 𝐵) | |
| 13 | 11, 12 | mpan 690 | . . . 4 ⊢ (𝑓:𝐵–onto→𝐴 → 𝒫 𝐴 ≼ 𝒫 𝐵) |
| 14 | 13 | exlimiv 1930 | . . 3 ⊢ (∃𝑓 𝑓:𝐵–onto→𝐴 → 𝒫 𝐴 ≼ 𝒫 𝐵) |
| 15 | 10, 14 | syl 17 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅) → 𝒫 𝐴 ≼ 𝒫 𝐵) |
| 16 | 3 | brrelex2i 5695 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
| 17 | 16 | pwexd 5334 | . . 3 ⊢ (𝐴 ≼ 𝐵 → 𝒫 𝐵 ∈ V) |
| 18 | 0ss 4363 | . . . 4 ⊢ ∅ ⊆ 𝐵 | |
| 19 | 18 | sspwi 4575 | . . 3 ⊢ 𝒫 ∅ ⊆ 𝒫 𝐵 |
| 20 | ssdomg 8971 | . . 3 ⊢ (𝒫 𝐵 ∈ V → (𝒫 ∅ ⊆ 𝒫 𝐵 → 𝒫 ∅ ≼ 𝒫 𝐵)) | |
| 21 | 17, 19, 20 | mpisyl 21 | . 2 ⊢ (𝐴 ≼ 𝐵 → 𝒫 ∅ ≼ 𝒫 𝐵) |
| 22 | 2, 15, 21 | pm2.61ne 3010 | 1 ⊢ (𝐴 ≼ 𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 class class class wbr 5107 –onto→wfo 6509 ≼ cdom 8916 ≺ csdm 8917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-en 8919 df-dom 8920 df-sdom 8921 |
| This theorem is referenced by: djulepw 10146 gchpwdom 10623 gchaclem 10631 2ndcredom 23337 |
| Copyright terms: Public domain | W3C validator |