MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwdom Structured version   Visualization version   GIF version

Theorem pwdom 9076
Description: Injection of sets implies injection on power sets. (Contributed by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
pwdom (𝐴𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵)

Proof of Theorem pwdom
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 pweq 4575 . . 3 (𝐴 = ∅ → 𝒫 𝐴 = 𝒫 ∅)
21breq1d 5116 . 2 (𝐴 = ∅ → (𝒫 𝐴 ≼ 𝒫 𝐵 ↔ 𝒫 ∅ ≼ 𝒫 𝐵))
3 reldom 8892 . . . . . . 7 Rel ≼
43brrelex1i 5689 . . . . . 6 (𝐴𝐵𝐴 ∈ V)
5 0sdomg 9051 . . . . . 6 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
64, 5syl 17 . . . . 5 (𝐴𝐵 → (∅ ≺ 𝐴𝐴 ≠ ∅))
76biimpar 479 . . . 4 ((𝐴𝐵𝐴 ≠ ∅) → ∅ ≺ 𝐴)
8 simpl 484 . . . 4 ((𝐴𝐵𝐴 ≠ ∅) → 𝐴𝐵)
9 fodomr 9075 . . . 4 ((∅ ≺ 𝐴𝐴𝐵) → ∃𝑓 𝑓:𝐵onto𝐴)
107, 8, 9syl2anc 585 . . 3 ((𝐴𝐵𝐴 ≠ ∅) → ∃𝑓 𝑓:𝐵onto𝐴)
11 vex 3448 . . . . 5 𝑓 ∈ V
12 fopwdom 9027 . . . . 5 ((𝑓 ∈ V ∧ 𝑓:𝐵onto𝐴) → 𝒫 𝐴 ≼ 𝒫 𝐵)
1311, 12mpan 689 . . . 4 (𝑓:𝐵onto𝐴 → 𝒫 𝐴 ≼ 𝒫 𝐵)
1413exlimiv 1934 . . 3 (∃𝑓 𝑓:𝐵onto𝐴 → 𝒫 𝐴 ≼ 𝒫 𝐵)
1510, 14syl 17 . 2 ((𝐴𝐵𝐴 ≠ ∅) → 𝒫 𝐴 ≼ 𝒫 𝐵)
163brrelex2i 5690 . . . 4 (𝐴𝐵𝐵 ∈ V)
1716pwexd 5335 . . 3 (𝐴𝐵 → 𝒫 𝐵 ∈ V)
18 0ss 4357 . . . 4 ∅ ⊆ 𝐵
1918sspwi 4573 . . 3 𝒫 ∅ ⊆ 𝒫 𝐵
20 ssdomg 8943 . . 3 (𝒫 𝐵 ∈ V → (𝒫 ∅ ⊆ 𝒫 𝐵 → 𝒫 ∅ ≼ 𝒫 𝐵))
2117, 19, 20mpisyl 21 . 2 (𝐴𝐵 → 𝒫 ∅ ≼ 𝒫 𝐵)
222, 15, 21pm2.61ne 3027 1 (𝐴𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  wne 2940  Vcvv 3444  wss 3911  c0 4283  𝒫 cpw 4561   class class class wbr 5106  ontowfo 6495  cdom 8884  csdm 8885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-en 8887  df-dom 8888  df-sdom 8889
This theorem is referenced by:  djulepw  10133  gchpwdom  10611  gchaclem  10619  2ndcredom  22817
  Copyright terms: Public domain W3C validator