![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwdom | Structured version Visualization version GIF version |
Description: Injection of sets implies injection on power sets. (Contributed by Mario Carneiro, 9-Apr-2015.) |
Ref | Expression |
---|---|
pwdom | ⊢ (𝐴 ≼ 𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4615 | . . 3 ⊢ (𝐴 = ∅ → 𝒫 𝐴 = 𝒫 ∅) | |
2 | 1 | breq1d 5157 | . 2 ⊢ (𝐴 = ∅ → (𝒫 𝐴 ≼ 𝒫 𝐵 ↔ 𝒫 ∅ ≼ 𝒫 𝐵)) |
3 | reldom 8941 | . . . . . . 7 ⊢ Rel ≼ | |
4 | 3 | brrelex1i 5730 | . . . . . 6 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
5 | 0sdomg 9100 | . . . . . 6 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐴 ≼ 𝐵 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
7 | 6 | biimpar 478 | . . . 4 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅) → ∅ ≺ 𝐴) |
8 | simpl 483 | . . . 4 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐴 ≼ 𝐵) | |
9 | fodomr 9124 | . . . 4 ⊢ ((∅ ≺ 𝐴 ∧ 𝐴 ≼ 𝐵) → ∃𝑓 𝑓:𝐵–onto→𝐴) | |
10 | 7, 8, 9 | syl2anc 584 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:𝐵–onto→𝐴) |
11 | vex 3478 | . . . . 5 ⊢ 𝑓 ∈ V | |
12 | fopwdom 9076 | . . . . 5 ⊢ ((𝑓 ∈ V ∧ 𝑓:𝐵–onto→𝐴) → 𝒫 𝐴 ≼ 𝒫 𝐵) | |
13 | 11, 12 | mpan 688 | . . . 4 ⊢ (𝑓:𝐵–onto→𝐴 → 𝒫 𝐴 ≼ 𝒫 𝐵) |
14 | 13 | exlimiv 1933 | . . 3 ⊢ (∃𝑓 𝑓:𝐵–onto→𝐴 → 𝒫 𝐴 ≼ 𝒫 𝐵) |
15 | 10, 14 | syl 17 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐴 ≠ ∅) → 𝒫 𝐴 ≼ 𝒫 𝐵) |
16 | 3 | brrelex2i 5731 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
17 | 16 | pwexd 5376 | . . 3 ⊢ (𝐴 ≼ 𝐵 → 𝒫 𝐵 ∈ V) |
18 | 0ss 4395 | . . . 4 ⊢ ∅ ⊆ 𝐵 | |
19 | 18 | sspwi 4613 | . . 3 ⊢ 𝒫 ∅ ⊆ 𝒫 𝐵 |
20 | ssdomg 8992 | . . 3 ⊢ (𝒫 𝐵 ∈ V → (𝒫 ∅ ⊆ 𝒫 𝐵 → 𝒫 ∅ ≼ 𝒫 𝐵)) | |
21 | 17, 19, 20 | mpisyl 21 | . 2 ⊢ (𝐴 ≼ 𝐵 → 𝒫 ∅ ≼ 𝒫 𝐵) |
22 | 2, 15, 21 | pm2.61ne 3027 | 1 ⊢ (𝐴 ≼ 𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 ⊆ wss 3947 ∅c0 4321 𝒫 cpw 4601 class class class wbr 5147 –onto→wfo 6538 ≼ cdom 8933 ≺ csdm 8934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-en 8936 df-dom 8937 df-sdom 8938 |
This theorem is referenced by: djulepw 10183 gchpwdom 10661 gchaclem 10669 2ndcredom 22945 |
Copyright terms: Public domain | W3C validator |