| Step | Hyp | Ref
| Expression |
| 1 | | xmetres 24303 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌))) |
| 2 | | iscfil2 25218 |
. . . . 5
⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌)) → (𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ (𝐹 ∈ (Fil‘(𝑋 ∩ 𝑌)) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥))) |
| 3 | 2 | simplbda 499 |
. . . 4
⊢ (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌)) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥) |
| 4 | 1, 3 | sylan 580 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥) |
| 5 | | cfilfil 25219 |
. . . . . . . . . . . . 13
⊢ (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌)) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ (Fil‘(𝑋 ∩ 𝑌))) |
| 6 | 1, 5 | sylan 580 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ (Fil‘(𝑋 ∩ 𝑌))) |
| 7 | | filelss 23790 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Fil‘(𝑋 ∩ 𝑌)) ∧ 𝑦 ∈ 𝐹) → 𝑦 ⊆ (𝑋 ∩ 𝑌)) |
| 8 | 6, 7 | sylan 580 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) → 𝑦 ⊆ (𝑋 ∩ 𝑌)) |
| 9 | | inss2 4213 |
. . . . . . . . . . 11
⊢ (𝑋 ∩ 𝑌) ⊆ 𝑌 |
| 10 | 8, 9 | sstrdi 3971 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) → 𝑦 ⊆ 𝑌) |
| 11 | 10 | sselda 3958 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) ∧ 𝑢 ∈ 𝑦) → 𝑢 ∈ 𝑌) |
| 12 | 10 | sselda 3958 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) ∧ 𝑣 ∈ 𝑦) → 𝑣 ∈ 𝑌) |
| 13 | 11, 12 | anim12dan 619 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) ∧ (𝑢 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦)) → (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) |
| 14 | | ovres 7573 |
. . . . . . . 8
⊢ ((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) = (𝑢𝐷𝑣)) |
| 15 | 13, 14 | syl 17 |
. . . . . . 7
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) ∧ (𝑢 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦)) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) = (𝑢𝐷𝑣)) |
| 16 | 15 | breq1d 5129 |
. . . . . 6
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) ∧ (𝑢 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦)) → ((𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ (𝑢𝐷𝑣) < 𝑥)) |
| 17 | 16 | 2ralbidva 3203 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) → (∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑥)) |
| 18 | 17 | rexbidva 3162 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑥)) |
| 19 | 18 | ralbidv 3163 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑥)) |
| 20 | 4, 19 | mpbid 232 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑥) |
| 21 | | filfbas 23786 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘(𝑋 ∩ 𝑌)) → 𝐹 ∈ (fBas‘(𝑋 ∩ 𝑌))) |
| 22 | 6, 21 | syl 17 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ (fBas‘(𝑋 ∩ 𝑌))) |
| 23 | | filsspw 23789 |
. . . . . 6
⊢ (𝐹 ∈ (Fil‘(𝑋 ∩ 𝑌)) → 𝐹 ⊆ 𝒫 (𝑋 ∩ 𝑌)) |
| 24 | 6, 23 | syl 17 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ⊆ 𝒫 (𝑋 ∩ 𝑌)) |
| 25 | | inss1 4212 |
. . . . . 6
⊢ (𝑋 ∩ 𝑌) ⊆ 𝑋 |
| 26 | 25 | sspwi 4587 |
. . . . 5
⊢ 𝒫
(𝑋 ∩ 𝑌) ⊆ 𝒫 𝑋 |
| 27 | 24, 26 | sstrdi 3971 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ⊆ 𝒫 𝑋) |
| 28 | | elfvdm 6913 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
| 29 | 28 | adantr 480 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑋 ∈ dom ∞Met) |
| 30 | | fbasweak 23803 |
. . . 4
⊢ ((𝐹 ∈ (fBas‘(𝑋 ∩ 𝑌)) ∧ 𝐹 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ dom ∞Met) → 𝐹 ∈ (fBas‘𝑋)) |
| 31 | 22, 27, 29, 30 | syl3anc 1373 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ (fBas‘𝑋)) |
| 32 | | fgcfil 25223 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐹) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑥)) |
| 33 | 31, 32 | syldan 591 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((𝑋filGen𝐹) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑥)) |
| 34 | 20, 33 | mpbird 257 |
1
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen𝐹) ∈ (CauFil‘𝐷)) |