MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilresi Structured version   Visualization version   GIF version

Theorem cfilresi 23900
Description: A Cauchy filter on a metric subspace extends to a Cauchy filter in the larger space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cfilresi ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen𝐹) ∈ (CauFil‘𝐷))

Proof of Theorem cfilresi
Dummy variables 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetres 22976 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
2 iscfil2 23871 . . . . 5 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)) → (𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ (𝐹 ∈ (Fil‘(𝑋𝑌)) ∧ ∀𝑥 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)))
32simplbda 502 . . . 4 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ∀𝑥 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)
41, 3sylan 582 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ∀𝑥 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)
5 cfilfil 23872 . . . . . . . . . . . . 13 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ (Fil‘(𝑋𝑌)))
61, 5sylan 582 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ (Fil‘(𝑋𝑌)))
7 filelss 22462 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘(𝑋𝑌)) ∧ 𝑦𝐹) → 𝑦 ⊆ (𝑋𝑌))
86, 7sylan 582 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦𝐹) → 𝑦 ⊆ (𝑋𝑌))
9 inss2 4208 . . . . . . . . . . 11 (𝑋𝑌) ⊆ 𝑌
108, 9sstrdi 3981 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦𝐹) → 𝑦𝑌)
1110sselda 3969 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦𝐹) ∧ 𝑢𝑦) → 𝑢𝑌)
1210sselda 3969 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦𝐹) ∧ 𝑣𝑦) → 𝑣𝑌)
1311, 12anim12dan 620 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦𝐹) ∧ (𝑢𝑦𝑣𝑦)) → (𝑢𝑌𝑣𝑌))
14 ovres 7316 . . . . . . . 8 ((𝑢𝑌𝑣𝑌) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) = (𝑢𝐷𝑣))
1513, 14syl 17 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦𝐹) ∧ (𝑢𝑦𝑣𝑦)) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) = (𝑢𝐷𝑣))
1615breq1d 5078 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦𝐹) ∧ (𝑢𝑦𝑣𝑦)) → ((𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ (𝑢𝐷𝑣) < 𝑥))
17162ralbidva 3200 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦𝐹) → (∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑥))
1817rexbidva 3298 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (∃𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∃𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑥))
1918ralbidv 3199 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (∀𝑥 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑥))
204, 19mpbid 234 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ∀𝑥 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑥)
21 filfbas 22458 . . . . 5 (𝐹 ∈ (Fil‘(𝑋𝑌)) → 𝐹 ∈ (fBas‘(𝑋𝑌)))
226, 21syl 17 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ (fBas‘(𝑋𝑌)))
23 filsspw 22461 . . . . . 6 (𝐹 ∈ (Fil‘(𝑋𝑌)) → 𝐹 ⊆ 𝒫 (𝑋𝑌))
246, 23syl 17 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ⊆ 𝒫 (𝑋𝑌))
25 inss1 4207 . . . . . 6 (𝑋𝑌) ⊆ 𝑋
2625sspwi 4555 . . . . 5 𝒫 (𝑋𝑌) ⊆ 𝒫 𝑋
2724, 26sstrdi 3981 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ⊆ 𝒫 𝑋)
28 elfvdm 6704 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
2928adantr 483 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑋 ∈ dom ∞Met)
30 fbasweak 22475 . . . 4 ((𝐹 ∈ (fBas‘(𝑋𝑌)) ∧ 𝐹 ⊆ 𝒫 𝑋𝑋 ∈ dom ∞Met) → 𝐹 ∈ (fBas‘𝑋))
3122, 27, 29, 30syl3anc 1367 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ (fBas‘𝑋))
32 fgcfil 23876 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐹) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑥))
3331, 32syldan 593 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((𝑋filGen𝐹) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑥))
3420, 33mpbird 259 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen𝐹) ∈ (CauFil‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  cin 3937  wss 3938  𝒫 cpw 4541   class class class wbr 5068   × cxp 5555  dom cdm 5557  cres 5559  cfv 6357  (class class class)co 7158   < clt 10677  +crp 12392  ∞Metcxmet 20532  fBascfbas 20535  filGencfg 20536  Filcfil 22455  CauFilccfil 23857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-2 11703  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ico 12747  df-xmet 20540  df-fbas 20544  df-fg 20545  df-fil 22456  df-cfil 23860
This theorem is referenced by:  cfilres  23901  cmetss  23921
  Copyright terms: Public domain W3C validator