| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | xmetres 24374 | . . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌))) | 
| 2 |  | iscfil2 25300 | . . . . 5
⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌)) → (𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ (𝐹 ∈ (Fil‘(𝑋 ∩ 𝑌)) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥))) | 
| 3 | 2 | simplbda 499 | . . . 4
⊢ (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌)) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥) | 
| 4 | 1, 3 | sylan 580 | . . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥) | 
| 5 |  | cfilfil 25301 | . . . . . . . . . . . . 13
⊢ (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌)) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ (Fil‘(𝑋 ∩ 𝑌))) | 
| 6 | 1, 5 | sylan 580 | . . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ (Fil‘(𝑋 ∩ 𝑌))) | 
| 7 |  | filelss 23860 | . . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Fil‘(𝑋 ∩ 𝑌)) ∧ 𝑦 ∈ 𝐹) → 𝑦 ⊆ (𝑋 ∩ 𝑌)) | 
| 8 | 6, 7 | sylan 580 | . . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) → 𝑦 ⊆ (𝑋 ∩ 𝑌)) | 
| 9 |  | inss2 4238 | . . . . . . . . . . 11
⊢ (𝑋 ∩ 𝑌) ⊆ 𝑌 | 
| 10 | 8, 9 | sstrdi 3996 | . . . . . . . . . 10
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) → 𝑦 ⊆ 𝑌) | 
| 11 | 10 | sselda 3983 | . . . . . . . . 9
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) ∧ 𝑢 ∈ 𝑦) → 𝑢 ∈ 𝑌) | 
| 12 | 10 | sselda 3983 | . . . . . . . . 9
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) ∧ 𝑣 ∈ 𝑦) → 𝑣 ∈ 𝑌) | 
| 13 | 11, 12 | anim12dan 619 | . . . . . . . 8
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) ∧ (𝑢 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦)) → (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) | 
| 14 |  | ovres 7599 | . . . . . . . 8
⊢ ((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) = (𝑢𝐷𝑣)) | 
| 15 | 13, 14 | syl 17 | . . . . . . 7
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) ∧ (𝑢 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦)) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) = (𝑢𝐷𝑣)) | 
| 16 | 15 | breq1d 5153 | . . . . . 6
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) ∧ (𝑢 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦)) → ((𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ (𝑢𝐷𝑣) < 𝑥)) | 
| 17 | 16 | 2ralbidva 3219 | . . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) → (∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑥)) | 
| 18 | 17 | rexbidva 3177 | . . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑥)) | 
| 19 | 18 | ralbidv 3178 | . . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑥)) | 
| 20 | 4, 19 | mpbid 232 | . 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑥) | 
| 21 |  | filfbas 23856 | . . . . 5
⊢ (𝐹 ∈ (Fil‘(𝑋 ∩ 𝑌)) → 𝐹 ∈ (fBas‘(𝑋 ∩ 𝑌))) | 
| 22 | 6, 21 | syl 17 | . . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ (fBas‘(𝑋 ∩ 𝑌))) | 
| 23 |  | filsspw 23859 | . . . . . 6
⊢ (𝐹 ∈ (Fil‘(𝑋 ∩ 𝑌)) → 𝐹 ⊆ 𝒫 (𝑋 ∩ 𝑌)) | 
| 24 | 6, 23 | syl 17 | . . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ⊆ 𝒫 (𝑋 ∩ 𝑌)) | 
| 25 |  | inss1 4237 | . . . . . 6
⊢ (𝑋 ∩ 𝑌) ⊆ 𝑋 | 
| 26 | 25 | sspwi 4612 | . . . . 5
⊢ 𝒫
(𝑋 ∩ 𝑌) ⊆ 𝒫 𝑋 | 
| 27 | 24, 26 | sstrdi 3996 | . . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ⊆ 𝒫 𝑋) | 
| 28 |  | elfvdm 6943 | . . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) | 
| 29 | 28 | adantr 480 | . . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑋 ∈ dom ∞Met) | 
| 30 |  | fbasweak 23873 | . . . 4
⊢ ((𝐹 ∈ (fBas‘(𝑋 ∩ 𝑌)) ∧ 𝐹 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ dom ∞Met) → 𝐹 ∈ (fBas‘𝑋)) | 
| 31 | 22, 27, 29, 30 | syl3anc 1373 | . . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ (fBas‘𝑋)) | 
| 32 |  | fgcfil 25305 | . . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐹) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑥)) | 
| 33 | 31, 32 | syldan 591 | . 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((𝑋filGen𝐹) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑥)) | 
| 34 | 20, 33 | mpbird 257 | 1
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen𝐹) ∈ (CauFil‘𝐷)) |