Step | Hyp | Ref
| Expression |
1 | | xmetres 23517 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌))) |
2 | | iscfil2 24430 |
. . . . 5
⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌)) → (𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ (𝐹 ∈ (Fil‘(𝑋 ∩ 𝑌)) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥))) |
3 | 2 | simplbda 500 |
. . . 4
⊢ (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌)) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥) |
4 | 1, 3 | sylan 580 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥) |
5 | | cfilfil 24431 |
. . . . . . . . . . . . 13
⊢ (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌)) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ (Fil‘(𝑋 ∩ 𝑌))) |
6 | 1, 5 | sylan 580 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ (Fil‘(𝑋 ∩ 𝑌))) |
7 | | filelss 23003 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Fil‘(𝑋 ∩ 𝑌)) ∧ 𝑦 ∈ 𝐹) → 𝑦 ⊆ (𝑋 ∩ 𝑌)) |
8 | 6, 7 | sylan 580 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) → 𝑦 ⊆ (𝑋 ∩ 𝑌)) |
9 | | inss2 4163 |
. . . . . . . . . . 11
⊢ (𝑋 ∩ 𝑌) ⊆ 𝑌 |
10 | 8, 9 | sstrdi 3933 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) → 𝑦 ⊆ 𝑌) |
11 | 10 | sselda 3921 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) ∧ 𝑢 ∈ 𝑦) → 𝑢 ∈ 𝑌) |
12 | 10 | sselda 3921 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) ∧ 𝑣 ∈ 𝑦) → 𝑣 ∈ 𝑌) |
13 | 11, 12 | anim12dan 619 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) ∧ (𝑢 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦)) → (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) |
14 | | ovres 7438 |
. . . . . . . 8
⊢ ((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) = (𝑢𝐷𝑣)) |
15 | 13, 14 | syl 17 |
. . . . . . 7
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) ∧ (𝑢 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦)) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) = (𝑢𝐷𝑣)) |
16 | 15 | breq1d 5084 |
. . . . . 6
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) ∧ (𝑢 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦)) → ((𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ (𝑢𝐷𝑣) < 𝑥)) |
17 | 16 | 2ralbidva 3128 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦 ∈ 𝐹) → (∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑥)) |
18 | 17 | rexbidva 3225 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑥)) |
19 | 18 | ralbidv 3112 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑥)) |
20 | 4, 19 | mpbid 231 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑥) |
21 | | filfbas 22999 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘(𝑋 ∩ 𝑌)) → 𝐹 ∈ (fBas‘(𝑋 ∩ 𝑌))) |
22 | 6, 21 | syl 17 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ (fBas‘(𝑋 ∩ 𝑌))) |
23 | | filsspw 23002 |
. . . . . 6
⊢ (𝐹 ∈ (Fil‘(𝑋 ∩ 𝑌)) → 𝐹 ⊆ 𝒫 (𝑋 ∩ 𝑌)) |
24 | 6, 23 | syl 17 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ⊆ 𝒫 (𝑋 ∩ 𝑌)) |
25 | | inss1 4162 |
. . . . . 6
⊢ (𝑋 ∩ 𝑌) ⊆ 𝑋 |
26 | 25 | sspwi 4547 |
. . . . 5
⊢ 𝒫
(𝑋 ∩ 𝑌) ⊆ 𝒫 𝑋 |
27 | 24, 26 | sstrdi 3933 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ⊆ 𝒫 𝑋) |
28 | | elfvdm 6806 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
29 | 28 | adantr 481 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑋 ∈ dom ∞Met) |
30 | | fbasweak 23016 |
. . . 4
⊢ ((𝐹 ∈ (fBas‘(𝑋 ∩ 𝑌)) ∧ 𝐹 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ dom ∞Met) → 𝐹 ∈ (fBas‘𝑋)) |
31 | 22, 27, 29, 30 | syl3anc 1370 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ (fBas‘𝑋)) |
32 | | fgcfil 24435 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐹) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑥)) |
33 | 31, 32 | syldan 591 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((𝑋filGen𝐹) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑥)) |
34 | 20, 33 | mpbird 256 |
1
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen𝐹) ∈ (CauFil‘𝐷)) |