Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1stcof | Structured version Visualization version GIF version |
Description: Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.) |
Ref | Expression |
---|---|
1stcof | ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st ∘ 𝐹):𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo1st 7718 | . . . 4 ⊢ 1st :V–onto→V | |
2 | fofn 6582 | . . . 4 ⊢ (1st :V–onto→V → 1st Fn V) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 1st Fn V |
4 | ffn 6502 | . . . 4 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹 Fn 𝐴) | |
5 | dffn2 6504 | . . . 4 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) | |
6 | 4, 5 | sylib 221 | . . 3 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹:𝐴⟶V) |
7 | fnfco 6532 | . . 3 ⊢ ((1st Fn V ∧ 𝐹:𝐴⟶V) → (1st ∘ 𝐹) Fn 𝐴) | |
8 | 3, 6, 7 | sylancr 590 | . 2 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st ∘ 𝐹) Fn 𝐴) |
9 | rnco 6086 | . . 3 ⊢ ran (1st ∘ 𝐹) = ran (1st ↾ ran 𝐹) | |
10 | frn 6508 | . . . . 5 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran 𝐹 ⊆ (𝐵 × 𝐶)) | |
11 | ssres2 5855 | . . . . 5 ⊢ (ran 𝐹 ⊆ (𝐵 × 𝐶) → (1st ↾ ran 𝐹) ⊆ (1st ↾ (𝐵 × 𝐶))) | |
12 | rnss 5784 | . . . . 5 ⊢ ((1st ↾ ran 𝐹) ⊆ (1st ↾ (𝐵 × 𝐶)) → ran (1st ↾ ran 𝐹) ⊆ ran (1st ↾ (𝐵 × 𝐶))) | |
13 | 10, 11, 12 | 3syl 18 | . . . 4 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ↾ ran 𝐹) ⊆ ran (1st ↾ (𝐵 × 𝐶))) |
14 | f1stres 7722 | . . . . 5 ⊢ (1st ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐵 | |
15 | frn 6508 | . . . . 5 ⊢ ((1st ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐵 → ran (1st ↾ (𝐵 × 𝐶)) ⊆ 𝐵) | |
16 | 14, 15 | ax-mp 5 | . . . 4 ⊢ ran (1st ↾ (𝐵 × 𝐶)) ⊆ 𝐵 |
17 | 13, 16 | sstrdi 3906 | . . 3 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ↾ ran 𝐹) ⊆ 𝐵) |
18 | 9, 17 | eqsstrid 3942 | . 2 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ∘ 𝐹) ⊆ 𝐵) |
19 | df-f 6343 | . 2 ⊢ ((1st ∘ 𝐹):𝐴⟶𝐵 ↔ ((1st ∘ 𝐹) Fn 𝐴 ∧ ran (1st ∘ 𝐹) ⊆ 𝐵)) | |
20 | 8, 18, 19 | sylanbrc 586 | 1 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st ∘ 𝐹):𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Vcvv 3409 ⊆ wss 3860 × cxp 5525 ran crn 5528 ↾ cres 5529 ∘ ccom 5531 Fn wfn 6334 ⟶wf 6335 –onto→wfo 6337 1st c1st 7696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-fo 6345 df-fv 6347 df-1st 7698 |
This theorem is referenced by: ruclem11 15646 ruclem12 15647 caubl 24013 |
Copyright terms: Public domain | W3C validator |