![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1stcof | Structured version Visualization version GIF version |
Description: Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.) |
Ref | Expression |
---|---|
1stcof | ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st ∘ 𝐹):𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo1st 8050 | . . . 4 ⊢ 1st :V–onto→V | |
2 | fofn 6836 | . . . 4 ⊢ (1st :V–onto→V → 1st Fn V) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 1st Fn V |
4 | ffn 6747 | . . . 4 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹 Fn 𝐴) | |
5 | dffn2 6749 | . . . 4 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) | |
6 | 4, 5 | sylib 218 | . . 3 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹:𝐴⟶V) |
7 | fnfco 6786 | . . 3 ⊢ ((1st Fn V ∧ 𝐹:𝐴⟶V) → (1st ∘ 𝐹) Fn 𝐴) | |
8 | 3, 6, 7 | sylancr 586 | . 2 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st ∘ 𝐹) Fn 𝐴) |
9 | rnco 6283 | . . 3 ⊢ ran (1st ∘ 𝐹) = ran (1st ↾ ran 𝐹) | |
10 | frn 6754 | . . . . 5 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran 𝐹 ⊆ (𝐵 × 𝐶)) | |
11 | ssres2 6034 | . . . . 5 ⊢ (ran 𝐹 ⊆ (𝐵 × 𝐶) → (1st ↾ ran 𝐹) ⊆ (1st ↾ (𝐵 × 𝐶))) | |
12 | rnss 5964 | . . . . 5 ⊢ ((1st ↾ ran 𝐹) ⊆ (1st ↾ (𝐵 × 𝐶)) → ran (1st ↾ ran 𝐹) ⊆ ran (1st ↾ (𝐵 × 𝐶))) | |
13 | 10, 11, 12 | 3syl 18 | . . . 4 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ↾ ran 𝐹) ⊆ ran (1st ↾ (𝐵 × 𝐶))) |
14 | f1stres 8054 | . . . . 5 ⊢ (1st ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐵 | |
15 | frn 6754 | . . . . 5 ⊢ ((1st ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐵 → ran (1st ↾ (𝐵 × 𝐶)) ⊆ 𝐵) | |
16 | 14, 15 | ax-mp 5 | . . . 4 ⊢ ran (1st ↾ (𝐵 × 𝐶)) ⊆ 𝐵 |
17 | 13, 16 | sstrdi 4021 | . . 3 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ↾ ran 𝐹) ⊆ 𝐵) |
18 | 9, 17 | eqsstrid 4057 | . 2 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ∘ 𝐹) ⊆ 𝐵) |
19 | df-f 6577 | . 2 ⊢ ((1st ∘ 𝐹):𝐴⟶𝐵 ↔ ((1st ∘ 𝐹) Fn 𝐴 ∧ ran (1st ∘ 𝐹) ⊆ 𝐵)) | |
20 | 8, 18, 19 | sylanbrc 582 | 1 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st ∘ 𝐹):𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Vcvv 3488 ⊆ wss 3976 × cxp 5698 ran crn 5701 ↾ cres 5702 ∘ ccom 5704 Fn wfn 6568 ⟶wf 6569 –onto→wfo 6571 1st c1st 8028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-1st 8030 |
This theorem is referenced by: ruclem11 16288 ruclem12 16289 caubl 25361 |
Copyright terms: Public domain | W3C validator |