MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stcof Structured version   Visualization version   GIF version

Theorem 1stcof 7998
Description: Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.)
Assertion
Ref Expression
1stcof (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st𝐹):𝐴𝐵)

Proof of Theorem 1stcof
StepHypRef Expression
1 fo1st 7988 . . . 4 1st :V–onto→V
2 fofn 6774 . . . 4 (1st :V–onto→V → 1st Fn V)
31, 2ax-mp 5 . . 3 1st Fn V
4 ffn 6688 . . . 4 (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹 Fn 𝐴)
5 dffn2 6690 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴⟶V)
64, 5sylib 218 . . 3 (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹:𝐴⟶V)
7 fnfco 6725 . . 3 ((1st Fn V ∧ 𝐹:𝐴⟶V) → (1st𝐹) Fn 𝐴)
83, 6, 7sylancr 587 . 2 (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st𝐹) Fn 𝐴)
9 rnco 6225 . . 3 ran (1st𝐹) = ran (1st ↾ ran 𝐹)
10 frn 6695 . . . . 5 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran 𝐹 ⊆ (𝐵 × 𝐶))
11 ssres2 5975 . . . . 5 (ran 𝐹 ⊆ (𝐵 × 𝐶) → (1st ↾ ran 𝐹) ⊆ (1st ↾ (𝐵 × 𝐶)))
12 rnss 5903 . . . . 5 ((1st ↾ ran 𝐹) ⊆ (1st ↾ (𝐵 × 𝐶)) → ran (1st ↾ ran 𝐹) ⊆ ran (1st ↾ (𝐵 × 𝐶)))
1310, 11, 123syl 18 . . . 4 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ↾ ran 𝐹) ⊆ ran (1st ↾ (𝐵 × 𝐶)))
14 f1stres 7992 . . . . 5 (1st ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐵
15 frn 6695 . . . . 5 ((1st ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐵 → ran (1st ↾ (𝐵 × 𝐶)) ⊆ 𝐵)
1614, 15ax-mp 5 . . . 4 ran (1st ↾ (𝐵 × 𝐶)) ⊆ 𝐵
1713, 16sstrdi 3959 . . 3 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ↾ ran 𝐹) ⊆ 𝐵)
189, 17eqsstrid 3985 . 2 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st𝐹) ⊆ 𝐵)
19 df-f 6515 . 2 ((1st𝐹):𝐴𝐵 ↔ ((1st𝐹) Fn 𝐴 ∧ ran (1st𝐹) ⊆ 𝐵))
208, 18, 19sylanbrc 583 1 (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st𝐹):𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Vcvv 3447  wss 3914   × cxp 5636  ran crn 5639  cres 5640  ccom 5642   Fn wfn 6506  wf 6507  ontowfo 6509  1st c1st 7966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-1st 7968
This theorem is referenced by:  ruclem11  16208  ruclem12  16209  caubl  25208
  Copyright terms: Public domain W3C validator