MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem15 Structured version   Visualization version   GIF version

Theorem tfrlem15 8031
Description: Lemma for transfinite recursion. Without assuming ax-rep 5193, we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem15 (𝐵 ∈ On → (𝐵 ∈ dom recs(𝐹) ↔ (recs(𝐹) ↾ 𝐵) ∈ V))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem15
StepHypRef Expression
1 tfrlem.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem9a 8025 . . 3 (𝐵 ∈ dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) ∈ V)
32adantl 484 . 2 ((𝐵 ∈ On ∧ 𝐵 ∈ dom recs(𝐹)) → (recs(𝐹) ↾ 𝐵) ∈ V)
41tfrlem13 8029 . . . 4 ¬ recs(𝐹) ∈ V
5 simpr 487 . . . . 5 ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → (recs(𝐹) ↾ 𝐵) ∈ V)
6 resss 5881 . . . . . . . 8 (recs(𝐹) ↾ 𝐵) ⊆ recs(𝐹)
76a1i 11 . . . . . . 7 (dom recs(𝐹) ⊆ 𝐵 → (recs(𝐹) ↾ 𝐵) ⊆ recs(𝐹))
81tfrlem6 8021 . . . . . . . . 9 Rel recs(𝐹)
9 resdm 5900 . . . . . . . . 9 (Rel recs(𝐹) → (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹))
108, 9ax-mp 5 . . . . . . . 8 (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹)
11 ssres2 5884 . . . . . . . 8 (dom recs(𝐹) ⊆ 𝐵 → (recs(𝐹) ↾ dom recs(𝐹)) ⊆ (recs(𝐹) ↾ 𝐵))
1210, 11eqsstrrid 4019 . . . . . . 7 (dom recs(𝐹) ⊆ 𝐵 → recs(𝐹) ⊆ (recs(𝐹) ↾ 𝐵))
137, 12eqssd 3987 . . . . . 6 (dom recs(𝐹) ⊆ 𝐵 → (recs(𝐹) ↾ 𝐵) = recs(𝐹))
1413eleq1d 2900 . . . . 5 (dom recs(𝐹) ⊆ 𝐵 → ((recs(𝐹) ↾ 𝐵) ∈ V ↔ recs(𝐹) ∈ V))
155, 14syl5ibcom 247 . . . 4 ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → (dom recs(𝐹) ⊆ 𝐵 → recs(𝐹) ∈ V))
164, 15mtoi 201 . . 3 ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → ¬ dom recs(𝐹) ⊆ 𝐵)
171tfrlem8 8023 . . . 4 Ord dom recs(𝐹)
18 eloni 6204 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
1918adantr 483 . . . 4 ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → Ord 𝐵)
20 ordtri1 6227 . . . . 5 ((Ord dom recs(𝐹) ∧ Ord 𝐵) → (dom recs(𝐹) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ dom recs(𝐹)))
2120con2bid 357 . . . 4 ((Ord dom recs(𝐹) ∧ Ord 𝐵) → (𝐵 ∈ dom recs(𝐹) ↔ ¬ dom recs(𝐹) ⊆ 𝐵))
2217, 19, 21sylancr 589 . . 3 ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → (𝐵 ∈ dom recs(𝐹) ↔ ¬ dom recs(𝐹) ⊆ 𝐵))
2316, 22mpbird 259 . 2 ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → 𝐵 ∈ dom recs(𝐹))
243, 23impbida 799 1 (𝐵 ∈ On → (𝐵 ∈ dom recs(𝐹) ↔ (recs(𝐹) ↾ 𝐵) ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  {cab 2802  wral 3141  wrex 3142  Vcvv 3497  wss 3939  dom cdm 5558  cres 5560  Rel wrel 5563  Ord word 6193  Oncon0 6194   Fn wfn 6353  cfv 6358  recscrecs 8010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-fv 6366  df-wrecs 7950  df-recs 8011
This theorem is referenced by:  tfrlem16  8032  tfr2b  8035
  Copyright terms: Public domain W3C validator