![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfrlem15 | Structured version Visualization version GIF version |
Description: Lemma for transfinite recursion. Without assuming ax-rep 5282, we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfrlem15 | ⊢ (𝐵 ∈ On → (𝐵 ∈ dom recs(𝐹) ↔ (recs(𝐹) ↾ 𝐵) ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem9a 8408 | . . 3 ⊢ (𝐵 ∈ dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) ∈ V) |
3 | 2 | adantl 480 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐵 ∈ dom recs(𝐹)) → (recs(𝐹) ↾ 𝐵) ∈ V) |
4 | 1 | tfrlem13 8412 | . . . 4 ⊢ ¬ recs(𝐹) ∈ V |
5 | simpr 483 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → (recs(𝐹) ↾ 𝐵) ∈ V) | |
6 | resss 6003 | . . . . . . . 8 ⊢ (recs(𝐹) ↾ 𝐵) ⊆ recs(𝐹) | |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (dom recs(𝐹) ⊆ 𝐵 → (recs(𝐹) ↾ 𝐵) ⊆ recs(𝐹)) |
8 | 1 | tfrlem6 8404 | . . . . . . . . 9 ⊢ Rel recs(𝐹) |
9 | resdm 6027 | . . . . . . . . 9 ⊢ (Rel recs(𝐹) → (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹)) | |
10 | 8, 9 | ax-mp 5 | . . . . . . . 8 ⊢ (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹) |
11 | ssres2 6006 | . . . . . . . 8 ⊢ (dom recs(𝐹) ⊆ 𝐵 → (recs(𝐹) ↾ dom recs(𝐹)) ⊆ (recs(𝐹) ↾ 𝐵)) | |
12 | 10, 11 | eqsstrrid 4028 | . . . . . . 7 ⊢ (dom recs(𝐹) ⊆ 𝐵 → recs(𝐹) ⊆ (recs(𝐹) ↾ 𝐵)) |
13 | 7, 12 | eqssd 3996 | . . . . . 6 ⊢ (dom recs(𝐹) ⊆ 𝐵 → (recs(𝐹) ↾ 𝐵) = recs(𝐹)) |
14 | 13 | eleq1d 2811 | . . . . 5 ⊢ (dom recs(𝐹) ⊆ 𝐵 → ((recs(𝐹) ↾ 𝐵) ∈ V ↔ recs(𝐹) ∈ V)) |
15 | 5, 14 | syl5ibcom 244 | . . . 4 ⊢ ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → (dom recs(𝐹) ⊆ 𝐵 → recs(𝐹) ∈ V)) |
16 | 4, 15 | mtoi 198 | . . 3 ⊢ ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → ¬ dom recs(𝐹) ⊆ 𝐵) |
17 | 1 | tfrlem8 8406 | . . . 4 ⊢ Ord dom recs(𝐹) |
18 | eloni 6378 | . . . . 5 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
19 | 18 | adantr 479 | . . . 4 ⊢ ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → Ord 𝐵) |
20 | ordtri1 6401 | . . . . 5 ⊢ ((Ord dom recs(𝐹) ∧ Ord 𝐵) → (dom recs(𝐹) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ dom recs(𝐹))) | |
21 | 20 | con2bid 353 | . . . 4 ⊢ ((Ord dom recs(𝐹) ∧ Ord 𝐵) → (𝐵 ∈ dom recs(𝐹) ↔ ¬ dom recs(𝐹) ⊆ 𝐵)) |
22 | 17, 19, 21 | sylancr 585 | . . 3 ⊢ ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → (𝐵 ∈ dom recs(𝐹) ↔ ¬ dom recs(𝐹) ⊆ 𝐵)) |
23 | 16, 22 | mpbird 256 | . 2 ⊢ ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → 𝐵 ∈ dom recs(𝐹)) |
24 | 3, 23 | impbida 799 | 1 ⊢ (𝐵 ∈ On → (𝐵 ∈ dom recs(𝐹) ↔ (recs(𝐹) ↾ 𝐵) ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {cab 2703 ∀wral 3051 ∃wrex 3060 Vcvv 3462 ⊆ wss 3946 dom cdm 5674 ↾ cres 5676 Rel wrel 5679 Ord word 6367 Oncon0 6368 Fn wfn 6541 ‘cfv 6546 recscrecs 8392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-fo 6552 df-fv 6554 df-ov 7419 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 |
This theorem is referenced by: tfrlem16 8415 tfr2b 8418 |
Copyright terms: Public domain | W3C validator |