Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tfrlem15 | Structured version Visualization version GIF version |
Description: Lemma for transfinite recursion. Without assuming ax-rep 5214, we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfrlem15 | ⊢ (𝐵 ∈ On → (𝐵 ∈ dom recs(𝐹) ↔ (recs(𝐹) ↾ 𝐵) ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem9a 8208 | . . 3 ⊢ (𝐵 ∈ dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) ∈ V) |
3 | 2 | adantl 482 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐵 ∈ dom recs(𝐹)) → (recs(𝐹) ↾ 𝐵) ∈ V) |
4 | 1 | tfrlem13 8212 | . . . 4 ⊢ ¬ recs(𝐹) ∈ V |
5 | simpr 485 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → (recs(𝐹) ↾ 𝐵) ∈ V) | |
6 | resss 5915 | . . . . . . . 8 ⊢ (recs(𝐹) ↾ 𝐵) ⊆ recs(𝐹) | |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (dom recs(𝐹) ⊆ 𝐵 → (recs(𝐹) ↾ 𝐵) ⊆ recs(𝐹)) |
8 | 1 | tfrlem6 8204 | . . . . . . . . 9 ⊢ Rel recs(𝐹) |
9 | resdm 5935 | . . . . . . . . 9 ⊢ (Rel recs(𝐹) → (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹)) | |
10 | 8, 9 | ax-mp 5 | . . . . . . . 8 ⊢ (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹) |
11 | ssres2 5918 | . . . . . . . 8 ⊢ (dom recs(𝐹) ⊆ 𝐵 → (recs(𝐹) ↾ dom recs(𝐹)) ⊆ (recs(𝐹) ↾ 𝐵)) | |
12 | 10, 11 | eqsstrrid 3975 | . . . . . . 7 ⊢ (dom recs(𝐹) ⊆ 𝐵 → recs(𝐹) ⊆ (recs(𝐹) ↾ 𝐵)) |
13 | 7, 12 | eqssd 3943 | . . . . . 6 ⊢ (dom recs(𝐹) ⊆ 𝐵 → (recs(𝐹) ↾ 𝐵) = recs(𝐹)) |
14 | 13 | eleq1d 2825 | . . . . 5 ⊢ (dom recs(𝐹) ⊆ 𝐵 → ((recs(𝐹) ↾ 𝐵) ∈ V ↔ recs(𝐹) ∈ V)) |
15 | 5, 14 | syl5ibcom 244 | . . . 4 ⊢ ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → (dom recs(𝐹) ⊆ 𝐵 → recs(𝐹) ∈ V)) |
16 | 4, 15 | mtoi 198 | . . 3 ⊢ ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → ¬ dom recs(𝐹) ⊆ 𝐵) |
17 | 1 | tfrlem8 8206 | . . . 4 ⊢ Ord dom recs(𝐹) |
18 | eloni 6275 | . . . . 5 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
19 | 18 | adantr 481 | . . . 4 ⊢ ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → Ord 𝐵) |
20 | ordtri1 6298 | . . . . 5 ⊢ ((Ord dom recs(𝐹) ∧ Ord 𝐵) → (dom recs(𝐹) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ dom recs(𝐹))) | |
21 | 20 | con2bid 355 | . . . 4 ⊢ ((Ord dom recs(𝐹) ∧ Ord 𝐵) → (𝐵 ∈ dom recs(𝐹) ↔ ¬ dom recs(𝐹) ⊆ 𝐵)) |
22 | 17, 19, 21 | sylancr 587 | . . 3 ⊢ ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → (𝐵 ∈ dom recs(𝐹) ↔ ¬ dom recs(𝐹) ⊆ 𝐵)) |
23 | 16, 22 | mpbird 256 | . 2 ⊢ ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → 𝐵 ∈ dom recs(𝐹)) |
24 | 3, 23 | impbida 798 | 1 ⊢ (𝐵 ∈ On → (𝐵 ∈ dom recs(𝐹) ↔ (recs(𝐹) ↾ 𝐵) ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 {cab 2717 ∀wral 3066 ∃wrex 3067 Vcvv 3431 ⊆ wss 3892 dom cdm 5590 ↾ cres 5592 Rel wrel 5595 Ord word 6264 Oncon0 6265 Fn wfn 6427 ‘cfv 6432 recscrecs 8192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fo 6438 df-fv 6440 df-ov 7274 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 |
This theorem is referenced by: tfrlem16 8215 tfr2b 8218 |
Copyright terms: Public domain | W3C validator |