![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpss1 | Structured version Visualization version GIF version |
Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
xpss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3819 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
2 | xpss12 5327 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐶) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) | |
3 | 1, 2 | mpan2 683 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3769 × cxp 5310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-in 3776 df-ss 3783 df-opab 4906 df-xp 5318 |
This theorem is referenced by: ssres2 5635 funssxp 6276 tposssxp 7594 tpostpos2 7611 unxpwdom2 8735 dfac12lem2 9254 axdc3lem 9560 fpwwe2 9753 canthp1lem2 9763 pwfseqlem5 9773 wrdexg 13544 imasvscafn 16512 imasvscaf 16514 gasubg 18047 mamures 20521 mdetrlin 20734 mdetrsca 20735 mdetunilem9 20752 mdetmul 20755 tx1cn 21741 cxpcn3 24833 imadifxp 29931 1stmbfm 30838 sxbrsigalem0 30849 cvmlift2lem1 31801 cvmlift2lem9 31810 poimirlem32 33930 trclexi 38710 cnvtrcl0 38716 volicoff 40955 volicofmpt 40957 issmflem 41682 |
Copyright terms: Public domain | W3C validator |