Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpss1 | Structured version Visualization version GIF version |
Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
xpss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3948 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
2 | xpss12 5615 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐶) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) | |
3 | 1, 2 | mpan2 689 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3892 × cxp 5598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-in 3899 df-ss 3909 df-opab 5144 df-xp 5606 |
This theorem is referenced by: ssres2 5931 funssxp 6659 tposssxp 8077 tpostpos2 8094 unxpwdom2 9395 dfac12lem2 9950 unctb 10011 axdc3lem 10256 fpwwe2 10449 pwfseqlem5 10469 imasvscafn 17297 imasvscaf 17299 gasubg 18957 mamures 21588 mdetrlin 21800 mdetrsca 21801 mdetunilem9 21818 mdetmul 21821 tx1cn 22809 cxpcn3 25950 imadifxp 30989 1stmbfm 32276 sxbrsigalem0 32287 cvmlift2lem1 33313 cvmlift2lem9 33322 poimirlem32 35857 trclexi 41441 cnvtrcl0 41447 volicoff 43765 volicofmpt 43767 issmflem 44495 |
Copyright terms: Public domain | W3C validator |