MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpss1 Structured version   Visualization version   GIF version

Theorem xpss1 5640
Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.)
Assertion
Ref Expression
xpss1 (𝐴𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶))

Proof of Theorem xpss1
StepHypRef Expression
1 ssid 3953 . 2 𝐶𝐶
2 xpss12 5636 . 2 ((𝐴𝐵𝐶𝐶) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶))
31, 2mpan2 691 1 (𝐴𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3898   × cxp 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ss 3915  df-opab 5158  df-xp 5627
This theorem is referenced by:  ssres2  5960  funssxp  6687  tposssxp  8169  tpostpos2  8186  unxpwdom2  9485  dfac12lem2  10047  unctb  10106  axdc3lem  10352  fpwwe2  10545  pwfseqlem5  10565  imasvscafn  17449  imasvscaf  17451  gasubg  19222  mamures  22332  mdetrlin  22537  mdetrsca  22538  mdetunilem9  22555  mdetmul  22558  tx1cn  23544  cxpcn3  26705  imadifxp  32602  1stmbfm  34345  sxbrsigalem0  34356  cvmlift2lem1  35418  cvmlift2lem9  35427  poimirlem32  37765  dfno2  43585  trclexi  43777  cnvtrcl0  43783  volicoff  46155  volicofmpt  46157  issmflem  46887
  Copyright terms: Public domain W3C validator