![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpss1 | Structured version Visualization version GIF version |
Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
xpss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4031 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
2 | xpss12 5715 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐶) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) | |
3 | 1, 2 | mpan2 690 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3976 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-opab 5229 df-xp 5706 |
This theorem is referenced by: ssres2 6034 funssxp 6776 tposssxp 8271 tpostpos2 8288 unxpwdom2 9657 dfac12lem2 10214 unctb 10273 axdc3lem 10519 fpwwe2 10712 pwfseqlem5 10732 imasvscafn 17597 imasvscaf 17599 gasubg 19342 mamures 22422 mdetrlin 22629 mdetrsca 22630 mdetunilem9 22647 mdetmul 22650 tx1cn 23638 cxpcn3 26809 imadifxp 32623 1stmbfm 34225 sxbrsigalem0 34236 cvmlift2lem1 35270 cvmlift2lem9 35279 poimirlem32 37612 dfno2 43390 trclexi 43582 cnvtrcl0 43588 volicoff 45916 volicofmpt 45918 issmflem 46648 |
Copyright terms: Public domain | W3C validator |