![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpss1 | Structured version Visualization version GIF version |
Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
xpss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4018 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
2 | xpss12 5704 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐶) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) | |
3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3963 × cxp 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ss 3980 df-opab 5211 df-xp 5695 |
This theorem is referenced by: ssres2 6025 funssxp 6765 tposssxp 8254 tpostpos2 8271 unxpwdom2 9626 dfac12lem2 10183 unctb 10242 axdc3lem 10488 fpwwe2 10681 pwfseqlem5 10701 imasvscafn 17584 imasvscaf 17586 gasubg 19333 mamures 22417 mdetrlin 22624 mdetrsca 22625 mdetunilem9 22642 mdetmul 22645 tx1cn 23633 cxpcn3 26806 imadifxp 32621 1stmbfm 34242 sxbrsigalem0 34253 cvmlift2lem1 35287 cvmlift2lem9 35296 poimirlem32 37639 dfno2 43418 trclexi 43610 cnvtrcl0 43616 volicoff 45951 volicofmpt 45953 issmflem 46683 |
Copyright terms: Public domain | W3C validator |