MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpss1 Structured version   Visualization version   GIF version

Theorem xpss1 5657
Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.)
Assertion
Ref Expression
xpss1 (𝐴𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶))

Proof of Theorem xpss1
StepHypRef Expression
1 ssid 3969 . 2 𝐶𝐶
2 xpss12 5653 . 2 ((𝐴𝐵𝐶𝐶) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶))
31, 2mpan2 691 1 (𝐴𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3914   × cxp 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ss 3931  df-opab 5170  df-xp 5644
This theorem is referenced by:  ssres2  5975  funssxp  6716  tposssxp  8209  tpostpos2  8226  unxpwdom2  9541  dfac12lem2  10098  unctb  10157  axdc3lem  10403  fpwwe2  10596  pwfseqlem5  10616  imasvscafn  17500  imasvscaf  17502  gasubg  19234  mamures  22284  mdetrlin  22489  mdetrsca  22490  mdetunilem9  22507  mdetmul  22510  tx1cn  23496  cxpcn3  26658  imadifxp  32530  1stmbfm  34251  sxbrsigalem0  34262  cvmlift2lem1  35289  cvmlift2lem9  35298  poimirlem32  37646  dfno2  43417  trclexi  43609  cnvtrcl0  43615  volicoff  45993  volicofmpt  45995  issmflem  46725
  Copyright terms: Public domain W3C validator