Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpss1 | Structured version Visualization version GIF version |
Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
xpss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3947 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
2 | xpss12 5603 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐶) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) | |
3 | 1, 2 | mpan2 687 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3891 × cxp 5586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-ss 3908 df-opab 5141 df-xp 5594 |
This theorem is referenced by: ssres2 5916 funssxp 6625 tposssxp 8030 tpostpos2 8047 unxpwdom2 9308 dfac12lem2 9884 unctb 9945 axdc3lem 10190 fpwwe2 10383 pwfseqlem5 10403 imasvscafn 17229 imasvscaf 17231 gasubg 18889 mamures 21520 mdetrlin 21732 mdetrsca 21733 mdetunilem9 21750 mdetmul 21753 tx1cn 22741 cxpcn3 25882 imadifxp 30919 1stmbfm 32206 sxbrsigalem0 32217 cvmlift2lem1 33243 cvmlift2lem9 33252 poimirlem32 35788 trclexi 41181 cnvtrcl0 41187 volicoff 43490 volicofmpt 43492 issmflem 44214 |
Copyright terms: Public domain | W3C validator |