| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpss1 | Structured version Visualization version GIF version | ||
| Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3986 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
| 2 | xpss12 5674 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐶) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3931 × cxp 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ss 3948 df-opab 5187 df-xp 5665 |
| This theorem is referenced by: ssres2 5996 funssxp 6739 tposssxp 8234 tpostpos2 8251 unxpwdom2 9607 dfac12lem2 10164 unctb 10223 axdc3lem 10469 fpwwe2 10662 pwfseqlem5 10682 imasvscafn 17556 imasvscaf 17558 gasubg 19290 mamures 22340 mdetrlin 22545 mdetrsca 22546 mdetunilem9 22563 mdetmul 22566 tx1cn 23552 cxpcn3 26715 imadifxp 32587 1stmbfm 34297 sxbrsigalem0 34308 cvmlift2lem1 35329 cvmlift2lem9 35338 poimirlem32 37681 dfno2 43419 trclexi 43611 cnvtrcl0 43617 volicoff 45991 volicofmpt 45993 issmflem 46723 |
| Copyright terms: Public domain | W3C validator |