MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpss1 Structured version   Visualization version   GIF version

Theorem xpss1 5678
Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.)
Assertion
Ref Expression
xpss1 (𝐴𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶))

Proof of Theorem xpss1
StepHypRef Expression
1 ssid 3986 . 2 𝐶𝐶
2 xpss12 5674 . 2 ((𝐴𝐵𝐶𝐶) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶))
31, 2mpan2 691 1 (𝐴𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3931   × cxp 5657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ss 3948  df-opab 5187  df-xp 5665
This theorem is referenced by:  ssres2  5996  funssxp  6739  tposssxp  8234  tpostpos2  8251  unxpwdom2  9607  dfac12lem2  10164  unctb  10223  axdc3lem  10469  fpwwe2  10662  pwfseqlem5  10682  imasvscafn  17556  imasvscaf  17558  gasubg  19290  mamures  22340  mdetrlin  22545  mdetrsca  22546  mdetunilem9  22563  mdetmul  22566  tx1cn  23552  cxpcn3  26715  imadifxp  32587  1stmbfm  34297  sxbrsigalem0  34308  cvmlift2lem1  35329  cvmlift2lem9  35338  poimirlem32  37681  dfno2  43419  trclexi  43611  cnvtrcl0  43617  volicoff  45991  volicofmpt  45993  issmflem  46723
  Copyright terms: Public domain W3C validator