| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpss1 | Structured version Visualization version GIF version | ||
| Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3966 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
| 2 | xpss12 5646 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐶) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3911 × cxp 5629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 df-opab 5165 df-xp 5637 |
| This theorem is referenced by: ssres2 5964 funssxp 6698 tposssxp 8186 tpostpos2 8203 unxpwdom2 9517 dfac12lem2 10074 unctb 10133 axdc3lem 10379 fpwwe2 10572 pwfseqlem5 10592 imasvscafn 17476 imasvscaf 17478 gasubg 19210 mamures 22260 mdetrlin 22465 mdetrsca 22466 mdetunilem9 22483 mdetmul 22486 tx1cn 23472 cxpcn3 26634 imadifxp 32503 1stmbfm 34224 sxbrsigalem0 34235 cvmlift2lem1 35262 cvmlift2lem9 35271 poimirlem32 37619 dfno2 43390 trclexi 43582 cnvtrcl0 43588 volicoff 45966 volicofmpt 45968 issmflem 46698 |
| Copyright terms: Public domain | W3C validator |