| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpss1 | Structured version Visualization version GIF version | ||
| Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3969 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
| 2 | xpss12 5653 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐶) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3914 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3931 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: ssres2 5975 funssxp 6716 tposssxp 8209 tpostpos2 8226 unxpwdom2 9541 dfac12lem2 10098 unctb 10157 axdc3lem 10403 fpwwe2 10596 pwfseqlem5 10616 imasvscafn 17500 imasvscaf 17502 gasubg 19234 mamures 22284 mdetrlin 22489 mdetrsca 22490 mdetunilem9 22507 mdetmul 22510 tx1cn 23496 cxpcn3 26658 imadifxp 32530 1stmbfm 34251 sxbrsigalem0 34262 cvmlift2lem1 35289 cvmlift2lem9 35298 poimirlem32 37646 dfno2 43417 trclexi 43609 cnvtrcl0 43615 volicoff 45993 volicofmpt 45995 issmflem 46725 |
| Copyright terms: Public domain | W3C validator |