| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpss1 | Structured version Visualization version GIF version | ||
| Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3953 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
| 2 | xpss12 5636 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐶) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3898 × cxp 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ss 3915 df-opab 5158 df-xp 5627 |
| This theorem is referenced by: ssres2 5960 funssxp 6687 tposssxp 8169 tpostpos2 8186 unxpwdom2 9485 dfac12lem2 10047 unctb 10106 axdc3lem 10352 fpwwe2 10545 pwfseqlem5 10565 imasvscafn 17449 imasvscaf 17451 gasubg 19222 mamures 22332 mdetrlin 22537 mdetrsca 22538 mdetunilem9 22555 mdetmul 22558 tx1cn 23544 cxpcn3 26705 imadifxp 32602 1stmbfm 34345 sxbrsigalem0 34356 cvmlift2lem1 35418 cvmlift2lem9 35427 poimirlem32 37765 dfno2 43585 trclexi 43777 cnvtrcl0 43783 volicoff 46155 volicofmpt 46157 issmflem 46887 |
| Copyright terms: Public domain | W3C validator |