| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpss1 | Structured version Visualization version GIF version | ||
| Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3952 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
| 2 | xpss12 5626 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐶) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3897 × cxp 5609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3914 df-opab 5149 df-xp 5617 |
| This theorem is referenced by: ssres2 5948 funssxp 6674 tposssxp 8155 tpostpos2 8172 unxpwdom2 9469 dfac12lem2 10031 unctb 10090 axdc3lem 10336 fpwwe2 10529 pwfseqlem5 10549 imasvscafn 17436 imasvscaf 17438 gasubg 19209 mamures 22307 mdetrlin 22512 mdetrsca 22513 mdetunilem9 22530 mdetmul 22533 tx1cn 23519 cxpcn3 26680 imadifxp 32573 1stmbfm 34265 sxbrsigalem0 34276 cvmlift2lem1 35338 cvmlift2lem9 35347 poimirlem32 37692 dfno2 43461 trclexi 43653 cnvtrcl0 43659 volicoff 46033 volicofmpt 46035 issmflem 46765 |
| Copyright terms: Public domain | W3C validator |