MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcof Structured version   Visualization version   GIF version

Theorem 2ndcof 7567
Description: Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
2ndcof (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd𝐹):𝐴𝐶)

Proof of Theorem 2ndcof
StepHypRef Expression
1 fo2nd 7557 . . . 4 2nd :V–onto→V
2 fofn 6452 . . . 4 (2nd :V–onto→V → 2nd Fn V)
31, 2ax-mp 5 . . 3 2nd Fn V
4 ffn 6374 . . . 4 (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹 Fn 𝐴)
5 dffn2 6376 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴⟶V)
64, 5sylib 219 . . 3 (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹:𝐴⟶V)
7 fnfco 6403 . . 3 ((2nd Fn V ∧ 𝐹:𝐴⟶V) → (2nd𝐹) Fn 𝐴)
83, 6, 7sylancr 587 . 2 (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd𝐹) Fn 𝐴)
9 rnco 5972 . . 3 ran (2nd𝐹) = ran (2nd ↾ ran 𝐹)
10 frn 6380 . . . . 5 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran 𝐹 ⊆ (𝐵 × 𝐶))
11 ssres2 5754 . . . . 5 (ran 𝐹 ⊆ (𝐵 × 𝐶) → (2nd ↾ ran 𝐹) ⊆ (2nd ↾ (𝐵 × 𝐶)))
12 rnss 5683 . . . . 5 ((2nd ↾ ran 𝐹) ⊆ (2nd ↾ (𝐵 × 𝐶)) → ran (2nd ↾ ran 𝐹) ⊆ ran (2nd ↾ (𝐵 × 𝐶)))
1310, 11, 123syl 18 . . . 4 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (2nd ↾ ran 𝐹) ⊆ ran (2nd ↾ (𝐵 × 𝐶)))
14 f2ndres 7561 . . . . 5 (2nd ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐶
15 frn 6380 . . . . 5 ((2nd ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐶 → ran (2nd ↾ (𝐵 × 𝐶)) ⊆ 𝐶)
1614, 15ax-mp 5 . . . 4 ran (2nd ↾ (𝐵 × 𝐶)) ⊆ 𝐶
1713, 16syl6ss 3896 . . 3 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (2nd ↾ ran 𝐹) ⊆ 𝐶)
189, 17syl5eqss 3931 . 2 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (2nd𝐹) ⊆ 𝐶)
19 df-f 6221 . 2 ((2nd𝐹):𝐴𝐶 ↔ ((2nd𝐹) Fn 𝐴 ∧ ran (2nd𝐹) ⊆ 𝐶))
208, 18, 19sylanbrc 583 1 (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd𝐹):𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Vcvv 3432  wss 3854   × cxp 5433  ran crn 5436  cres 5437  ccom 5439   Fn wfn 6212  wf 6213  ontowfo 6215  2nd c2nd 7535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pr 5214  ax-un 7310
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-fo 6223  df-fv 6225  df-2nd 7537
This theorem is referenced by:  axdc4lem  9712
  Copyright terms: Public domain W3C validator