MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcof Structured version   Visualization version   GIF version

Theorem 2ndcof 7729
Description: Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
2ndcof (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd𝐹):𝐴𝐶)

Proof of Theorem 2ndcof
StepHypRef Expression
1 fo2nd 7719 . . . 4 2nd :V–onto→V
2 fofn 6582 . . . 4 (2nd :V–onto→V → 2nd Fn V)
31, 2ax-mp 5 . . 3 2nd Fn V
4 ffn 6502 . . . 4 (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹 Fn 𝐴)
5 dffn2 6504 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴⟶V)
64, 5sylib 221 . . 3 (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹:𝐴⟶V)
7 fnfco 6532 . . 3 ((2nd Fn V ∧ 𝐹:𝐴⟶V) → (2nd𝐹) Fn 𝐴)
83, 6, 7sylancr 590 . 2 (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd𝐹) Fn 𝐴)
9 rnco 6086 . . 3 ran (2nd𝐹) = ran (2nd ↾ ran 𝐹)
10 frn 6508 . . . . 5 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran 𝐹 ⊆ (𝐵 × 𝐶))
11 ssres2 5855 . . . . 5 (ran 𝐹 ⊆ (𝐵 × 𝐶) → (2nd ↾ ran 𝐹) ⊆ (2nd ↾ (𝐵 × 𝐶)))
12 rnss 5784 . . . . 5 ((2nd ↾ ran 𝐹) ⊆ (2nd ↾ (𝐵 × 𝐶)) → ran (2nd ↾ ran 𝐹) ⊆ ran (2nd ↾ (𝐵 × 𝐶)))
1310, 11, 123syl 18 . . . 4 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (2nd ↾ ran 𝐹) ⊆ ran (2nd ↾ (𝐵 × 𝐶)))
14 f2ndres 7723 . . . . 5 (2nd ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐶
15 frn 6508 . . . . 5 ((2nd ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐶 → ran (2nd ↾ (𝐵 × 𝐶)) ⊆ 𝐶)
1614, 15ax-mp 5 . . . 4 ran (2nd ↾ (𝐵 × 𝐶)) ⊆ 𝐶
1713, 16sstrdi 3906 . . 3 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (2nd ↾ ran 𝐹) ⊆ 𝐶)
189, 17eqsstrid 3942 . 2 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (2nd𝐹) ⊆ 𝐶)
19 df-f 6343 . 2 ((2nd𝐹):𝐴𝐶 ↔ ((2nd𝐹) Fn 𝐴 ∧ ran (2nd𝐹) ⊆ 𝐶))
208, 18, 19sylanbrc 586 1 (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd𝐹):𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Vcvv 3409  wss 3860   × cxp 5525  ran crn 5528  cres 5529  ccom 5531   Fn wfn 6334  wf 6335  ontowfo 6337  2nd c2nd 7697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-fo 6345  df-fv 6347  df-2nd 7699
This theorem is referenced by:  axdc4lem  9920
  Copyright terms: Public domain W3C validator