| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ndcof | Structured version Visualization version GIF version | ||
| Description: Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.) |
| Ref | Expression |
|---|---|
| 2ndcof | ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd ∘ 𝐹):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fo2nd 7968 | . . . 4 ⊢ 2nd :V–onto→V | |
| 2 | fofn 6756 | . . . 4 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 2nd Fn V |
| 4 | ffn 6670 | . . . 4 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹 Fn 𝐴) | |
| 5 | dffn2 6672 | . . . 4 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) | |
| 6 | 4, 5 | sylib 218 | . . 3 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹:𝐴⟶V) |
| 7 | fnfco 6707 | . . 3 ⊢ ((2nd Fn V ∧ 𝐹:𝐴⟶V) → (2nd ∘ 𝐹) Fn 𝐴) | |
| 8 | 3, 6, 7 | sylancr 587 | . 2 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd ∘ 𝐹) Fn 𝐴) |
| 9 | rnco 6213 | . . 3 ⊢ ran (2nd ∘ 𝐹) = ran (2nd ↾ ran 𝐹) | |
| 10 | frn 6677 | . . . . 5 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran 𝐹 ⊆ (𝐵 × 𝐶)) | |
| 11 | ssres2 5964 | . . . . 5 ⊢ (ran 𝐹 ⊆ (𝐵 × 𝐶) → (2nd ↾ ran 𝐹) ⊆ (2nd ↾ (𝐵 × 𝐶))) | |
| 12 | rnss 5892 | . . . . 5 ⊢ ((2nd ↾ ran 𝐹) ⊆ (2nd ↾ (𝐵 × 𝐶)) → ran (2nd ↾ ran 𝐹) ⊆ ran (2nd ↾ (𝐵 × 𝐶))) | |
| 13 | 10, 11, 12 | 3syl 18 | . . . 4 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (2nd ↾ ran 𝐹) ⊆ ran (2nd ↾ (𝐵 × 𝐶))) |
| 14 | f2ndres 7972 | . . . . 5 ⊢ (2nd ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐶 | |
| 15 | frn 6677 | . . . . 5 ⊢ ((2nd ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐶 → ran (2nd ↾ (𝐵 × 𝐶)) ⊆ 𝐶) | |
| 16 | 14, 15 | ax-mp 5 | . . . 4 ⊢ ran (2nd ↾ (𝐵 × 𝐶)) ⊆ 𝐶 |
| 17 | 13, 16 | sstrdi 3956 | . . 3 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (2nd ↾ ran 𝐹) ⊆ 𝐶) |
| 18 | 9, 17 | eqsstrid 3982 | . 2 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (2nd ∘ 𝐹) ⊆ 𝐶) |
| 19 | df-f 6503 | . 2 ⊢ ((2nd ∘ 𝐹):𝐴⟶𝐶 ↔ ((2nd ∘ 𝐹) Fn 𝐴 ∧ ran (2nd ∘ 𝐹) ⊆ 𝐶)) | |
| 20 | 8, 18, 19 | sylanbrc 583 | 1 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd ∘ 𝐹):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Vcvv 3444 ⊆ wss 3911 × cxp 5629 ran crn 5632 ↾ cres 5633 ∘ ccom 5635 Fn wfn 6494 ⟶wf 6495 –onto→wfo 6497 2nd c2nd 7946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-2nd 7948 |
| This theorem is referenced by: axdc4lem 10384 |
| Copyright terms: Public domain | W3C validator |