![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ndcof | Structured version Visualization version GIF version |
Description: Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.) |
Ref | Expression |
---|---|
2ndcof | ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd ∘ 𝐹):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo2nd 7557 | . . . 4 ⊢ 2nd :V–onto→V | |
2 | fofn 6452 | . . . 4 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 2nd Fn V |
4 | ffn 6374 | . . . 4 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹 Fn 𝐴) | |
5 | dffn2 6376 | . . . 4 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) | |
6 | 4, 5 | sylib 219 | . . 3 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹:𝐴⟶V) |
7 | fnfco 6403 | . . 3 ⊢ ((2nd Fn V ∧ 𝐹:𝐴⟶V) → (2nd ∘ 𝐹) Fn 𝐴) | |
8 | 3, 6, 7 | sylancr 587 | . 2 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd ∘ 𝐹) Fn 𝐴) |
9 | rnco 5972 | . . 3 ⊢ ran (2nd ∘ 𝐹) = ran (2nd ↾ ran 𝐹) | |
10 | frn 6380 | . . . . 5 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran 𝐹 ⊆ (𝐵 × 𝐶)) | |
11 | ssres2 5754 | . . . . 5 ⊢ (ran 𝐹 ⊆ (𝐵 × 𝐶) → (2nd ↾ ran 𝐹) ⊆ (2nd ↾ (𝐵 × 𝐶))) | |
12 | rnss 5683 | . . . . 5 ⊢ ((2nd ↾ ran 𝐹) ⊆ (2nd ↾ (𝐵 × 𝐶)) → ran (2nd ↾ ran 𝐹) ⊆ ran (2nd ↾ (𝐵 × 𝐶))) | |
13 | 10, 11, 12 | 3syl 18 | . . . 4 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (2nd ↾ ran 𝐹) ⊆ ran (2nd ↾ (𝐵 × 𝐶))) |
14 | f2ndres 7561 | . . . . 5 ⊢ (2nd ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐶 | |
15 | frn 6380 | . . . . 5 ⊢ ((2nd ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐶 → ran (2nd ↾ (𝐵 × 𝐶)) ⊆ 𝐶) | |
16 | 14, 15 | ax-mp 5 | . . . 4 ⊢ ran (2nd ↾ (𝐵 × 𝐶)) ⊆ 𝐶 |
17 | 13, 16 | syl6ss 3896 | . . 3 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (2nd ↾ ran 𝐹) ⊆ 𝐶) |
18 | 9, 17 | syl5eqss 3931 | . 2 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (2nd ∘ 𝐹) ⊆ 𝐶) |
19 | df-f 6221 | . 2 ⊢ ((2nd ∘ 𝐹):𝐴⟶𝐶 ↔ ((2nd ∘ 𝐹) Fn 𝐴 ∧ ran (2nd ∘ 𝐹) ⊆ 𝐶)) | |
20 | 8, 18, 19 | sylanbrc 583 | 1 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd ∘ 𝐹):𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Vcvv 3432 ⊆ wss 3854 × cxp 5433 ran crn 5436 ↾ cres 5437 ∘ ccom 5439 Fn wfn 6212 ⟶wf 6213 –onto→wfo 6215 2nd c2nd 7535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pr 5214 ax-un 7310 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-id 5340 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-fo 6223 df-fv 6225 df-2nd 7537 |
This theorem is referenced by: axdc4lem 9712 |
Copyright terms: Public domain | W3C validator |