Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexp0a Structured version   Visualization version   GIF version

Theorem relexp0a 43705
Description: Absorption law for zeroth power of a relation. (Contributed by RP, 17-Jun-2020.)
Assertion
Ref Expression
relexp0a ((𝐴𝑉𝑁 ∈ ℕ0) → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0))

Proof of Theorem relexp0a
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 12444 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 oveq2 7395 . . . . . . . 8 (𝑥 = 1 → (𝐴𝑟𝑥) = (𝐴𝑟1))
32oveq1d 7402 . . . . . . 7 (𝑥 = 1 → ((𝐴𝑟𝑥)↑𝑟0) = ((𝐴𝑟1)↑𝑟0))
43sseq1d 3978 . . . . . 6 (𝑥 = 1 → (((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0) ↔ ((𝐴𝑟1)↑𝑟0) ⊆ (𝐴𝑟0)))
54imbi2d 340 . . . . 5 (𝑥 = 1 → ((𝐴𝑉 → ((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0)) ↔ (𝐴𝑉 → ((𝐴𝑟1)↑𝑟0) ⊆ (𝐴𝑟0))))
6 oveq2 7395 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴𝑟𝑥) = (𝐴𝑟𝑦))
76oveq1d 7402 . . . . . . 7 (𝑥 = 𝑦 → ((𝐴𝑟𝑥)↑𝑟0) = ((𝐴𝑟𝑦)↑𝑟0))
87sseq1d 3978 . . . . . 6 (𝑥 = 𝑦 → (((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0) ↔ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)))
98imbi2d 340 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝑉 → ((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0)) ↔ (𝐴𝑉 → ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0))))
10 oveq2 7395 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝐴𝑟𝑥) = (𝐴𝑟(𝑦 + 1)))
1110oveq1d 7402 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝐴𝑟𝑥)↑𝑟0) = ((𝐴𝑟(𝑦 + 1))↑𝑟0))
1211sseq1d 3978 . . . . . 6 (𝑥 = (𝑦 + 1) → (((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0) ↔ ((𝐴𝑟(𝑦 + 1))↑𝑟0) ⊆ (𝐴𝑟0)))
1312imbi2d 340 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝐴𝑉 → ((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0)) ↔ (𝐴𝑉 → ((𝐴𝑟(𝑦 + 1))↑𝑟0) ⊆ (𝐴𝑟0))))
14 oveq2 7395 . . . . . . . 8 (𝑥 = 𝑁 → (𝐴𝑟𝑥) = (𝐴𝑟𝑁))
1514oveq1d 7402 . . . . . . 7 (𝑥 = 𝑁 → ((𝐴𝑟𝑥)↑𝑟0) = ((𝐴𝑟𝑁)↑𝑟0))
1615sseq1d 3978 . . . . . 6 (𝑥 = 𝑁 → (((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0) ↔ ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0)))
1716imbi2d 340 . . . . 5 (𝑥 = 𝑁 → ((𝐴𝑉 → ((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0)) ↔ (𝐴𝑉 → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0))))
18 relexp1g 14992 . . . . . . 7 (𝐴𝑉 → (𝐴𝑟1) = 𝐴)
1918oveq1d 7402 . . . . . 6 (𝐴𝑉 → ((𝐴𝑟1)↑𝑟0) = (𝐴𝑟0))
20 ssid 3969 . . . . . 6 (𝐴𝑟0) ⊆ (𝐴𝑟0)
2119, 20eqsstrdi 3991 . . . . 5 (𝐴𝑉 → ((𝐴𝑟1)↑𝑟0) ⊆ (𝐴𝑟0))
22 simp2 1137 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → 𝐴𝑉)
23 simp1 1136 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → 𝑦 ∈ ℕ)
24 relexpsucnnr 14991 . . . . . . . . . 10 ((𝐴𝑉𝑦 ∈ ℕ) → (𝐴𝑟(𝑦 + 1)) = ((𝐴𝑟𝑦) ∘ 𝐴))
2524oveq1d 7402 . . . . . . . . 9 ((𝐴𝑉𝑦 ∈ ℕ) → ((𝐴𝑟(𝑦 + 1))↑𝑟0) = (((𝐴𝑟𝑦) ∘ 𝐴)↑𝑟0))
2622, 23, 25syl2anc 584 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → ((𝐴𝑟(𝑦 + 1))↑𝑟0) = (((𝐴𝑟𝑦) ∘ 𝐴)↑𝑟0))
27 ovex 7420 . . . . . . . . . . . . 13 (𝐴𝑟𝑦) ∈ V
28 coexg 7905 . . . . . . . . . . . . 13 (((𝐴𝑟𝑦) ∈ V ∧ 𝐴𝑉) → ((𝐴𝑟𝑦) ∘ 𝐴) ∈ V)
2927, 28mpan 690 . . . . . . . . . . . 12 (𝐴𝑉 → ((𝐴𝑟𝑦) ∘ 𝐴) ∈ V)
30 relexp0g 14988 . . . . . . . . . . . 12 (((𝐴𝑟𝑦) ∘ 𝐴) ∈ V → (((𝐴𝑟𝑦) ∘ 𝐴)↑𝑟0) = ( I ↾ (dom ((𝐴𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴𝑟𝑦) ∘ 𝐴))))
3129, 30syl 17 . . . . . . . . . . 11 (𝐴𝑉 → (((𝐴𝑟𝑦) ∘ 𝐴)↑𝑟0) = ( I ↾ (dom ((𝐴𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴𝑟𝑦) ∘ 𝐴))))
32 dmcoss 5938 . . . . . . . . . . . . 13 dom ((𝐴𝑟𝑦) ∘ 𝐴) ⊆ dom 𝐴
33 rncoss 5939 . . . . . . . . . . . . 13 ran ((𝐴𝑟𝑦) ∘ 𝐴) ⊆ ran (𝐴𝑟𝑦)
34 unss12 4151 . . . . . . . . . . . . 13 ((dom ((𝐴𝑟𝑦) ∘ 𝐴) ⊆ dom 𝐴 ∧ ran ((𝐴𝑟𝑦) ∘ 𝐴) ⊆ ran (𝐴𝑟𝑦)) → (dom ((𝐴𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴𝑟𝑦) ∘ 𝐴)) ⊆ (dom 𝐴 ∪ ran (𝐴𝑟𝑦)))
3532, 33, 34mp2an 692 . . . . . . . . . . . 12 (dom ((𝐴𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴𝑟𝑦) ∘ 𝐴)) ⊆ (dom 𝐴 ∪ ran (𝐴𝑟𝑦))
36 ssres2 5975 . . . . . . . . . . . 12 ((dom ((𝐴𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴𝑟𝑦) ∘ 𝐴)) ⊆ (dom 𝐴 ∪ ran (𝐴𝑟𝑦)) → ( I ↾ (dom ((𝐴𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴𝑟𝑦) ∘ 𝐴))) ⊆ ( I ↾ (dom 𝐴 ∪ ran (𝐴𝑟𝑦))))
3735, 36ax-mp 5 . . . . . . . . . . 11 ( I ↾ (dom ((𝐴𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴𝑟𝑦) ∘ 𝐴))) ⊆ ( I ↾ (dom 𝐴 ∪ ran (𝐴𝑟𝑦)))
3831, 37eqsstrdi 3991 . . . . . . . . . 10 (𝐴𝑉 → (((𝐴𝑟𝑦) ∘ 𝐴)↑𝑟0) ⊆ ( I ↾ (dom 𝐴 ∪ ran (𝐴𝑟𝑦))))
3922, 38syl 17 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → (((𝐴𝑟𝑦) ∘ 𝐴)↑𝑟0) ⊆ ( I ↾ (dom 𝐴 ∪ ran (𝐴𝑟𝑦))))
40 resundi 5964 . . . . . . . . . . 11 ( I ↾ (dom 𝐴 ∪ ran (𝐴𝑟𝑦))) = (( I ↾ dom 𝐴) ∪ ( I ↾ ran (𝐴𝑟𝑦)))
41 ssun1 4141 . . . . . . . . . . . . . . 15 dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
42 ssres2 5975 . . . . . . . . . . . . . . 15 (dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) → ( I ↾ dom 𝐴) ⊆ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
4341, 42ax-mp 5 . . . . . . . . . . . . . 14 ( I ↾ dom 𝐴) ⊆ ( I ↾ (dom 𝐴 ∪ ran 𝐴))
44 relexp0g 14988 . . . . . . . . . . . . . 14 (𝐴𝑉 → (𝐴𝑟0) = ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
4543, 44sseqtrrid 3990 . . . . . . . . . . . . 13 (𝐴𝑉 → ( I ↾ dom 𝐴) ⊆ (𝐴𝑟0))
4645adantr 480 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → ( I ↾ dom 𝐴) ⊆ (𝐴𝑟0))
47 ssun2 4142 . . . . . . . . . . . . . . 15 ran (𝐴𝑟𝑦) ⊆ (dom (𝐴𝑟𝑦) ∪ ran (𝐴𝑟𝑦))
48 ssres2 5975 . . . . . . . . . . . . . . 15 (ran (𝐴𝑟𝑦) ⊆ (dom (𝐴𝑟𝑦) ∪ ran (𝐴𝑟𝑦)) → ( I ↾ ran (𝐴𝑟𝑦)) ⊆ ( I ↾ (dom (𝐴𝑟𝑦) ∪ ran (𝐴𝑟𝑦))))
4947, 48ax-mp 5 . . . . . . . . . . . . . 14 ( I ↾ ran (𝐴𝑟𝑦)) ⊆ ( I ↾ (dom (𝐴𝑟𝑦) ∪ ran (𝐴𝑟𝑦)))
50 relexp0g 14988 . . . . . . . . . . . . . . 15 ((𝐴𝑟𝑦) ∈ V → ((𝐴𝑟𝑦)↑𝑟0) = ( I ↾ (dom (𝐴𝑟𝑦) ∪ ran (𝐴𝑟𝑦))))
5127, 50ax-mp 5 . . . . . . . . . . . . . 14 ((𝐴𝑟𝑦)↑𝑟0) = ( I ↾ (dom (𝐴𝑟𝑦) ∪ ran (𝐴𝑟𝑦)))
5249, 51sseqtrri 3996 . . . . . . . . . . . . 13 ( I ↾ ran (𝐴𝑟𝑦)) ⊆ ((𝐴𝑟𝑦)↑𝑟0)
53 simpr 484 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0))
5452, 53sstrid 3958 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → ( I ↾ ran (𝐴𝑟𝑦)) ⊆ (𝐴𝑟0))
5546, 54unssd 4155 . . . . . . . . . . 11 ((𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → (( I ↾ dom 𝐴) ∪ ( I ↾ ran (𝐴𝑟𝑦))) ⊆ (𝐴𝑟0))
5640, 55eqsstrid 3985 . . . . . . . . . 10 ((𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → ( I ↾ (dom 𝐴 ∪ ran (𝐴𝑟𝑦))) ⊆ (𝐴𝑟0))
57563adant1 1130 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → ( I ↾ (dom 𝐴 ∪ ran (𝐴𝑟𝑦))) ⊆ (𝐴𝑟0))
5839, 57sstrd 3957 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → (((𝐴𝑟𝑦) ∘ 𝐴)↑𝑟0) ⊆ (𝐴𝑟0))
5926, 58eqsstrd 3981 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → ((𝐴𝑟(𝑦 + 1))↑𝑟0) ⊆ (𝐴𝑟0))
60593exp 1119 . . . . . 6 (𝑦 ∈ ℕ → (𝐴𝑉 → (((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0) → ((𝐴𝑟(𝑦 + 1))↑𝑟0) ⊆ (𝐴𝑟0))))
6160a2d 29 . . . . 5 (𝑦 ∈ ℕ → ((𝐴𝑉 → ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → (𝐴𝑉 → ((𝐴𝑟(𝑦 + 1))↑𝑟0) ⊆ (𝐴𝑟0))))
625, 9, 13, 17, 21, 61nnind 12204 . . . 4 (𝑁 ∈ ℕ → (𝐴𝑉 → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0)))
63 oveq2 7395 . . . . . . . 8 (𝑁 = 0 → (𝐴𝑟𝑁) = (𝐴𝑟0))
6463oveq1d 7402 . . . . . . 7 (𝑁 = 0 → ((𝐴𝑟𝑁)↑𝑟0) = ((𝐴𝑟0)↑𝑟0))
65 relexp0idm 43704 . . . . . . 7 (𝐴𝑉 → ((𝐴𝑟0)↑𝑟0) = (𝐴𝑟0))
6664, 65sylan9eq 2784 . . . . . 6 ((𝑁 = 0 ∧ 𝐴𝑉) → ((𝐴𝑟𝑁)↑𝑟0) = (𝐴𝑟0))
67 eqimss 4005 . . . . . 6 (((𝐴𝑟𝑁)↑𝑟0) = (𝐴𝑟0) → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0))
6866, 67syl 17 . . . . 5 ((𝑁 = 0 ∧ 𝐴𝑉) → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0))
6968ex 412 . . . 4 (𝑁 = 0 → (𝐴𝑉 → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0)))
7062, 69jaoi 857 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝐴𝑉 → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0)))
711, 70sylbi 217 . 2 (𝑁 ∈ ℕ0 → (𝐴𝑉 → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0)))
7271impcom 407 1 ((𝐴𝑉𝑁 ∈ ℕ0) → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  wss 3914   I cid 5532  dom cdm 5638  ran crn 5639  cres 5640  ccom 5642  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071  cn 12186  0cn0 12442  𝑟crelexp 14985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-relexp 14986
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator