Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexp0a Structured version   Visualization version   GIF version

Theorem relexp0a 43819
Description: Absorption law for zeroth power of a relation. (Contributed by RP, 17-Jun-2020.)
Assertion
Ref Expression
relexp0a ((𝐴𝑉𝑁 ∈ ℕ0) → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0))

Proof of Theorem relexp0a
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 12383 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 oveq2 7354 . . . . . . . 8 (𝑥 = 1 → (𝐴𝑟𝑥) = (𝐴𝑟1))
32oveq1d 7361 . . . . . . 7 (𝑥 = 1 → ((𝐴𝑟𝑥)↑𝑟0) = ((𝐴𝑟1)↑𝑟0))
43sseq1d 3961 . . . . . 6 (𝑥 = 1 → (((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0) ↔ ((𝐴𝑟1)↑𝑟0) ⊆ (𝐴𝑟0)))
54imbi2d 340 . . . . 5 (𝑥 = 1 → ((𝐴𝑉 → ((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0)) ↔ (𝐴𝑉 → ((𝐴𝑟1)↑𝑟0) ⊆ (𝐴𝑟0))))
6 oveq2 7354 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴𝑟𝑥) = (𝐴𝑟𝑦))
76oveq1d 7361 . . . . . . 7 (𝑥 = 𝑦 → ((𝐴𝑟𝑥)↑𝑟0) = ((𝐴𝑟𝑦)↑𝑟0))
87sseq1d 3961 . . . . . 6 (𝑥 = 𝑦 → (((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0) ↔ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)))
98imbi2d 340 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝑉 → ((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0)) ↔ (𝐴𝑉 → ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0))))
10 oveq2 7354 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝐴𝑟𝑥) = (𝐴𝑟(𝑦 + 1)))
1110oveq1d 7361 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝐴𝑟𝑥)↑𝑟0) = ((𝐴𝑟(𝑦 + 1))↑𝑟0))
1211sseq1d 3961 . . . . . 6 (𝑥 = (𝑦 + 1) → (((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0) ↔ ((𝐴𝑟(𝑦 + 1))↑𝑟0) ⊆ (𝐴𝑟0)))
1312imbi2d 340 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝐴𝑉 → ((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0)) ↔ (𝐴𝑉 → ((𝐴𝑟(𝑦 + 1))↑𝑟0) ⊆ (𝐴𝑟0))))
14 oveq2 7354 . . . . . . . 8 (𝑥 = 𝑁 → (𝐴𝑟𝑥) = (𝐴𝑟𝑁))
1514oveq1d 7361 . . . . . . 7 (𝑥 = 𝑁 → ((𝐴𝑟𝑥)↑𝑟0) = ((𝐴𝑟𝑁)↑𝑟0))
1615sseq1d 3961 . . . . . 6 (𝑥 = 𝑁 → (((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0) ↔ ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0)))
1716imbi2d 340 . . . . 5 (𝑥 = 𝑁 → ((𝐴𝑉 → ((𝐴𝑟𝑥)↑𝑟0) ⊆ (𝐴𝑟0)) ↔ (𝐴𝑉 → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0))))
18 relexp1g 14933 . . . . . . 7 (𝐴𝑉 → (𝐴𝑟1) = 𝐴)
1918oveq1d 7361 . . . . . 6 (𝐴𝑉 → ((𝐴𝑟1)↑𝑟0) = (𝐴𝑟0))
20 ssid 3952 . . . . . 6 (𝐴𝑟0) ⊆ (𝐴𝑟0)
2119, 20eqsstrdi 3974 . . . . 5 (𝐴𝑉 → ((𝐴𝑟1)↑𝑟0) ⊆ (𝐴𝑟0))
22 simp2 1137 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → 𝐴𝑉)
23 simp1 1136 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → 𝑦 ∈ ℕ)
24 relexpsucnnr 14932 . . . . . . . . . 10 ((𝐴𝑉𝑦 ∈ ℕ) → (𝐴𝑟(𝑦 + 1)) = ((𝐴𝑟𝑦) ∘ 𝐴))
2524oveq1d 7361 . . . . . . . . 9 ((𝐴𝑉𝑦 ∈ ℕ) → ((𝐴𝑟(𝑦 + 1))↑𝑟0) = (((𝐴𝑟𝑦) ∘ 𝐴)↑𝑟0))
2622, 23, 25syl2anc 584 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → ((𝐴𝑟(𝑦 + 1))↑𝑟0) = (((𝐴𝑟𝑦) ∘ 𝐴)↑𝑟0))
27 ovex 7379 . . . . . . . . . . . . 13 (𝐴𝑟𝑦) ∈ V
28 coexg 7859 . . . . . . . . . . . . 13 (((𝐴𝑟𝑦) ∈ V ∧ 𝐴𝑉) → ((𝐴𝑟𝑦) ∘ 𝐴) ∈ V)
2927, 28mpan 690 . . . . . . . . . . . 12 (𝐴𝑉 → ((𝐴𝑟𝑦) ∘ 𝐴) ∈ V)
30 relexp0g 14929 . . . . . . . . . . . 12 (((𝐴𝑟𝑦) ∘ 𝐴) ∈ V → (((𝐴𝑟𝑦) ∘ 𝐴)↑𝑟0) = ( I ↾ (dom ((𝐴𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴𝑟𝑦) ∘ 𝐴))))
3129, 30syl 17 . . . . . . . . . . 11 (𝐴𝑉 → (((𝐴𝑟𝑦) ∘ 𝐴)↑𝑟0) = ( I ↾ (dom ((𝐴𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴𝑟𝑦) ∘ 𝐴))))
32 dmcoss 5913 . . . . . . . . . . . . 13 dom ((𝐴𝑟𝑦) ∘ 𝐴) ⊆ dom 𝐴
33 rncoss 5915 . . . . . . . . . . . . 13 ran ((𝐴𝑟𝑦) ∘ 𝐴) ⊆ ran (𝐴𝑟𝑦)
34 unss12 4135 . . . . . . . . . . . . 13 ((dom ((𝐴𝑟𝑦) ∘ 𝐴) ⊆ dom 𝐴 ∧ ran ((𝐴𝑟𝑦) ∘ 𝐴) ⊆ ran (𝐴𝑟𝑦)) → (dom ((𝐴𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴𝑟𝑦) ∘ 𝐴)) ⊆ (dom 𝐴 ∪ ran (𝐴𝑟𝑦)))
3532, 33, 34mp2an 692 . . . . . . . . . . . 12 (dom ((𝐴𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴𝑟𝑦) ∘ 𝐴)) ⊆ (dom 𝐴 ∪ ran (𝐴𝑟𝑦))
36 ssres2 5952 . . . . . . . . . . . 12 ((dom ((𝐴𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴𝑟𝑦) ∘ 𝐴)) ⊆ (dom 𝐴 ∪ ran (𝐴𝑟𝑦)) → ( I ↾ (dom ((𝐴𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴𝑟𝑦) ∘ 𝐴))) ⊆ ( I ↾ (dom 𝐴 ∪ ran (𝐴𝑟𝑦))))
3735, 36ax-mp 5 . . . . . . . . . . 11 ( I ↾ (dom ((𝐴𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴𝑟𝑦) ∘ 𝐴))) ⊆ ( I ↾ (dom 𝐴 ∪ ran (𝐴𝑟𝑦)))
3831, 37eqsstrdi 3974 . . . . . . . . . 10 (𝐴𝑉 → (((𝐴𝑟𝑦) ∘ 𝐴)↑𝑟0) ⊆ ( I ↾ (dom 𝐴 ∪ ran (𝐴𝑟𝑦))))
3922, 38syl 17 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → (((𝐴𝑟𝑦) ∘ 𝐴)↑𝑟0) ⊆ ( I ↾ (dom 𝐴 ∪ ran (𝐴𝑟𝑦))))
40 resundi 5941 . . . . . . . . . . 11 ( I ↾ (dom 𝐴 ∪ ran (𝐴𝑟𝑦))) = (( I ↾ dom 𝐴) ∪ ( I ↾ ran (𝐴𝑟𝑦)))
41 ssun1 4125 . . . . . . . . . . . . . . 15 dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
42 ssres2 5952 . . . . . . . . . . . . . . 15 (dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) → ( I ↾ dom 𝐴) ⊆ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
4341, 42ax-mp 5 . . . . . . . . . . . . . 14 ( I ↾ dom 𝐴) ⊆ ( I ↾ (dom 𝐴 ∪ ran 𝐴))
44 relexp0g 14929 . . . . . . . . . . . . . 14 (𝐴𝑉 → (𝐴𝑟0) = ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
4543, 44sseqtrrid 3973 . . . . . . . . . . . . 13 (𝐴𝑉 → ( I ↾ dom 𝐴) ⊆ (𝐴𝑟0))
4645adantr 480 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → ( I ↾ dom 𝐴) ⊆ (𝐴𝑟0))
47 ssun2 4126 . . . . . . . . . . . . . . 15 ran (𝐴𝑟𝑦) ⊆ (dom (𝐴𝑟𝑦) ∪ ran (𝐴𝑟𝑦))
48 ssres2 5952 . . . . . . . . . . . . . . 15 (ran (𝐴𝑟𝑦) ⊆ (dom (𝐴𝑟𝑦) ∪ ran (𝐴𝑟𝑦)) → ( I ↾ ran (𝐴𝑟𝑦)) ⊆ ( I ↾ (dom (𝐴𝑟𝑦) ∪ ran (𝐴𝑟𝑦))))
4947, 48ax-mp 5 . . . . . . . . . . . . . 14 ( I ↾ ran (𝐴𝑟𝑦)) ⊆ ( I ↾ (dom (𝐴𝑟𝑦) ∪ ran (𝐴𝑟𝑦)))
50 relexp0g 14929 . . . . . . . . . . . . . . 15 ((𝐴𝑟𝑦) ∈ V → ((𝐴𝑟𝑦)↑𝑟0) = ( I ↾ (dom (𝐴𝑟𝑦) ∪ ran (𝐴𝑟𝑦))))
5127, 50ax-mp 5 . . . . . . . . . . . . . 14 ((𝐴𝑟𝑦)↑𝑟0) = ( I ↾ (dom (𝐴𝑟𝑦) ∪ ran (𝐴𝑟𝑦)))
5249, 51sseqtrri 3979 . . . . . . . . . . . . 13 ( I ↾ ran (𝐴𝑟𝑦)) ⊆ ((𝐴𝑟𝑦)↑𝑟0)
53 simpr 484 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0))
5452, 53sstrid 3941 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → ( I ↾ ran (𝐴𝑟𝑦)) ⊆ (𝐴𝑟0))
5546, 54unssd 4139 . . . . . . . . . . 11 ((𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → (( I ↾ dom 𝐴) ∪ ( I ↾ ran (𝐴𝑟𝑦))) ⊆ (𝐴𝑟0))
5640, 55eqsstrid 3968 . . . . . . . . . 10 ((𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → ( I ↾ (dom 𝐴 ∪ ran (𝐴𝑟𝑦))) ⊆ (𝐴𝑟0))
57563adant1 1130 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → ( I ↾ (dom 𝐴 ∪ ran (𝐴𝑟𝑦))) ⊆ (𝐴𝑟0))
5839, 57sstrd 3940 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → (((𝐴𝑟𝑦) ∘ 𝐴)↑𝑟0) ⊆ (𝐴𝑟0))
5926, 58eqsstrd 3964 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐴𝑉 ∧ ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → ((𝐴𝑟(𝑦 + 1))↑𝑟0) ⊆ (𝐴𝑟0))
60593exp 1119 . . . . . 6 (𝑦 ∈ ℕ → (𝐴𝑉 → (((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0) → ((𝐴𝑟(𝑦 + 1))↑𝑟0) ⊆ (𝐴𝑟0))))
6160a2d 29 . . . . 5 (𝑦 ∈ ℕ → ((𝐴𝑉 → ((𝐴𝑟𝑦)↑𝑟0) ⊆ (𝐴𝑟0)) → (𝐴𝑉 → ((𝐴𝑟(𝑦 + 1))↑𝑟0) ⊆ (𝐴𝑟0))))
625, 9, 13, 17, 21, 61nnind 12143 . . . 4 (𝑁 ∈ ℕ → (𝐴𝑉 → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0)))
63 oveq2 7354 . . . . . . . 8 (𝑁 = 0 → (𝐴𝑟𝑁) = (𝐴𝑟0))
6463oveq1d 7361 . . . . . . 7 (𝑁 = 0 → ((𝐴𝑟𝑁)↑𝑟0) = ((𝐴𝑟0)↑𝑟0))
65 relexp0idm 43818 . . . . . . 7 (𝐴𝑉 → ((𝐴𝑟0)↑𝑟0) = (𝐴𝑟0))
6664, 65sylan9eq 2786 . . . . . 6 ((𝑁 = 0 ∧ 𝐴𝑉) → ((𝐴𝑟𝑁)↑𝑟0) = (𝐴𝑟0))
67 eqimss 3988 . . . . . 6 (((𝐴𝑟𝑁)↑𝑟0) = (𝐴𝑟0) → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0))
6866, 67syl 17 . . . . 5 ((𝑁 = 0 ∧ 𝐴𝑉) → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0))
6968ex 412 . . . 4 (𝑁 = 0 → (𝐴𝑉 → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0)))
7062, 69jaoi 857 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝐴𝑉 → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0)))
711, 70sylbi 217 . 2 (𝑁 ∈ ℕ0 → (𝐴𝑉 → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0)))
7271impcom 407 1 ((𝐴𝑉𝑁 ∈ ℕ0) → ((𝐴𝑟𝑁)↑𝑟0) ⊆ (𝐴𝑟0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  cun 3895  wss 3897   I cid 5508  dom cdm 5614  ran crn 5615  cres 5616  ccom 5618  (class class class)co 7346  0cc0 11006  1c1 11007   + caddc 11009  cn 12125  0cn0 12381  𝑟crelexp 14926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-seq 13909  df-relexp 14927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator