Step | Hyp | Ref
| Expression |
1 | | elnn0 12165 |
. . 3
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
2 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = 1 → (𝐴↑𝑟𝑥) = (𝐴↑𝑟1)) |
3 | 2 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑥 = 1 → ((𝐴↑𝑟𝑥)↑𝑟0) = ((𝐴↑𝑟1)↑𝑟0)) |
4 | 3 | sseq1d 3948 |
. . . . . 6
⊢ (𝑥 = 1 → (((𝐴↑𝑟𝑥)↑𝑟0) ⊆ (𝐴↑𝑟0)
↔ ((𝐴↑𝑟1)↑𝑟0)
⊆ (𝐴↑𝑟0))) |
5 | 4 | imbi2d 340 |
. . . . 5
⊢ (𝑥 = 1 → ((𝐴 ∈ 𝑉 → ((𝐴↑𝑟𝑥)↑𝑟0) ⊆ (𝐴↑𝑟0))
↔ (𝐴 ∈ 𝑉 → ((𝐴↑𝑟1)↑𝑟0)
⊆ (𝐴↑𝑟0)))) |
6 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝐴↑𝑟𝑥) = (𝐴↑𝑟𝑦)) |
7 | 6 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝐴↑𝑟𝑥)↑𝑟0) = ((𝐴↑𝑟𝑦)↑𝑟0)) |
8 | 7 | sseq1d 3948 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (((𝐴↑𝑟𝑥)↑𝑟0) ⊆ (𝐴↑𝑟0)
↔ ((𝐴↑𝑟𝑦)↑𝑟0) ⊆ (𝐴↑𝑟0))) |
9 | 8 | imbi2d 340 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝐴 ∈ 𝑉 → ((𝐴↑𝑟𝑥)↑𝑟0) ⊆ (𝐴↑𝑟0))
↔ (𝐴 ∈ 𝑉 → ((𝐴↑𝑟𝑦)↑𝑟0) ⊆ (𝐴↑𝑟0)))) |
10 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 + 1) → (𝐴↑𝑟𝑥) = (𝐴↑𝑟(𝑦 + 1))) |
11 | 10 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → ((𝐴↑𝑟𝑥)↑𝑟0) = ((𝐴↑𝑟(𝑦 +
1))↑𝑟0)) |
12 | 11 | sseq1d 3948 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → (((𝐴↑𝑟𝑥)↑𝑟0) ⊆ (𝐴↑𝑟0)
↔ ((𝐴↑𝑟(𝑦 +
1))↑𝑟0) ⊆ (𝐴↑𝑟0))) |
13 | 12 | imbi2d 340 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → ((𝐴 ∈ 𝑉 → ((𝐴↑𝑟𝑥)↑𝑟0) ⊆ (𝐴↑𝑟0))
↔ (𝐴 ∈ 𝑉 → ((𝐴↑𝑟(𝑦 +
1))↑𝑟0) ⊆ (𝐴↑𝑟0)))) |
14 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (𝐴↑𝑟𝑥) = (𝐴↑𝑟𝑁)) |
15 | 14 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → ((𝐴↑𝑟𝑥)↑𝑟0) = ((𝐴↑𝑟𝑁)↑𝑟0)) |
16 | 15 | sseq1d 3948 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (((𝐴↑𝑟𝑥)↑𝑟0) ⊆ (𝐴↑𝑟0)
↔ ((𝐴↑𝑟𝑁)↑𝑟0) ⊆ (𝐴↑𝑟0))) |
17 | 16 | imbi2d 340 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝐴 ∈ 𝑉 → ((𝐴↑𝑟𝑥)↑𝑟0) ⊆ (𝐴↑𝑟0))
↔ (𝐴 ∈ 𝑉 → ((𝐴↑𝑟𝑁)↑𝑟0) ⊆ (𝐴↑𝑟0)))) |
18 | | relexp1g 14665 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (𝐴↑𝑟1) = 𝐴) |
19 | 18 | oveq1d 7270 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → ((𝐴↑𝑟1)↑𝑟0)
= (𝐴↑𝑟0)) |
20 | | ssid 3939 |
. . . . . 6
⊢ (𝐴↑𝑟0)
⊆ (𝐴↑𝑟0) |
21 | 19, 20 | eqsstrdi 3971 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ((𝐴↑𝑟1)↑𝑟0)
⊆ (𝐴↑𝑟0)) |
22 | | simp2 1135 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ 𝐴 ∈ 𝑉 ∧ ((𝐴↑𝑟𝑦)↑𝑟0) ⊆ (𝐴↑𝑟0))
→ 𝐴 ∈ 𝑉) |
23 | | simp1 1134 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ 𝐴 ∈ 𝑉 ∧ ((𝐴↑𝑟𝑦)↑𝑟0) ⊆ (𝐴↑𝑟0))
→ 𝑦 ∈
ℕ) |
24 | | relexpsucnnr 14664 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ℕ) → (𝐴↑𝑟(𝑦 + 1)) = ((𝐴↑𝑟𝑦) ∘ 𝐴)) |
25 | 24 | oveq1d 7270 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ℕ) → ((𝐴↑𝑟(𝑦 +
1))↑𝑟0) = (((𝐴↑𝑟𝑦) ∘ 𝐴)↑𝑟0)) |
26 | 22, 23, 25 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ 𝐴 ∈ 𝑉 ∧ ((𝐴↑𝑟𝑦)↑𝑟0) ⊆ (𝐴↑𝑟0))
→ ((𝐴↑𝑟(𝑦 +
1))↑𝑟0) = (((𝐴↑𝑟𝑦) ∘ 𝐴)↑𝑟0)) |
27 | | ovex 7288 |
. . . . . . . . . . . . 13
⊢ (𝐴↑𝑟𝑦) ∈ V |
28 | | coexg 7750 |
. . . . . . . . . . . . 13
⊢ (((𝐴↑𝑟𝑦) ∈ V ∧ 𝐴 ∈ 𝑉) → ((𝐴↑𝑟𝑦) ∘ 𝐴) ∈ V) |
29 | 27, 28 | mpan 686 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → ((𝐴↑𝑟𝑦) ∘ 𝐴) ∈ V) |
30 | | relexp0g 14661 |
. . . . . . . . . . . 12
⊢ (((𝐴↑𝑟𝑦) ∘ 𝐴) ∈ V → (((𝐴↑𝑟𝑦) ∘ 𝐴)↑𝑟0) = ( I ↾
(dom ((𝐴↑𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴↑𝑟𝑦) ∘ 𝐴)))) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → (((𝐴↑𝑟𝑦) ∘ 𝐴)↑𝑟0) = ( I ↾
(dom ((𝐴↑𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴↑𝑟𝑦) ∘ 𝐴)))) |
32 | | dmcoss 5869 |
. . . . . . . . . . . . 13
⊢ dom
((𝐴↑𝑟𝑦) ∘ 𝐴) ⊆ dom 𝐴 |
33 | | rncoss 5870 |
. . . . . . . . . . . . 13
⊢ ran
((𝐴↑𝑟𝑦) ∘ 𝐴) ⊆ ran (𝐴↑𝑟𝑦) |
34 | | unss12 4112 |
. . . . . . . . . . . . 13
⊢ ((dom
((𝐴↑𝑟𝑦) ∘ 𝐴) ⊆ dom 𝐴 ∧ ran ((𝐴↑𝑟𝑦) ∘ 𝐴) ⊆ ran (𝐴↑𝑟𝑦)) → (dom ((𝐴↑𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴↑𝑟𝑦) ∘ 𝐴)) ⊆ (dom 𝐴 ∪ ran (𝐴↑𝑟𝑦))) |
35 | 32, 33, 34 | mp2an 688 |
. . . . . . . . . . . 12
⊢ (dom
((𝐴↑𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴↑𝑟𝑦) ∘ 𝐴)) ⊆ (dom 𝐴 ∪ ran (𝐴↑𝑟𝑦)) |
36 | | ssres2 5908 |
. . . . . . . . . . . 12
⊢ ((dom
((𝐴↑𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴↑𝑟𝑦) ∘ 𝐴)) ⊆ (dom 𝐴 ∪ ran (𝐴↑𝑟𝑦)) → ( I ↾ (dom ((𝐴↑𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴↑𝑟𝑦) ∘ 𝐴))) ⊆ ( I ↾ (dom 𝐴 ∪ ran (𝐴↑𝑟𝑦)))) |
37 | 35, 36 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ( I
↾ (dom ((𝐴↑𝑟𝑦) ∘ 𝐴) ∪ ran ((𝐴↑𝑟𝑦) ∘ 𝐴))) ⊆ ( I ↾ (dom 𝐴 ∪ ran (𝐴↑𝑟𝑦))) |
38 | 31, 37 | eqsstrdi 3971 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → (((𝐴↑𝑟𝑦) ∘ 𝐴)↑𝑟0) ⊆ ( I
↾ (dom 𝐴 ∪ ran
(𝐴↑𝑟𝑦)))) |
39 | 22, 38 | syl 17 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ 𝐴 ∈ 𝑉 ∧ ((𝐴↑𝑟𝑦)↑𝑟0) ⊆ (𝐴↑𝑟0))
→ (((𝐴↑𝑟𝑦) ∘ 𝐴)↑𝑟0) ⊆ ( I
↾ (dom 𝐴 ∪ ran
(𝐴↑𝑟𝑦)))) |
40 | | resundi 5894 |
. . . . . . . . . . 11
⊢ ( I
↾ (dom 𝐴 ∪ ran
(𝐴↑𝑟𝑦))) = (( I ↾ dom 𝐴) ∪ ( I ↾ ran (𝐴↑𝑟𝑦))) |
41 | | ssun1 4102 |
. . . . . . . . . . . . . . 15
⊢ dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) |
42 | | ssres2 5908 |
. . . . . . . . . . . . . . 15
⊢ (dom
𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) → ( I ↾ dom 𝐴) ⊆ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) |
43 | 41, 42 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ( I
↾ dom 𝐴) ⊆ ( I
↾ (dom 𝐴 ∪ ran
𝐴)) |
44 | | relexp0g 14661 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑉 → (𝐴↑𝑟0) = ( I ↾
(dom 𝐴 ∪ ran 𝐴))) |
45 | 43, 44 | sseqtrrid 3970 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → ( I ↾ dom 𝐴) ⊆ (𝐴↑𝑟0)) |
46 | 45 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ ((𝐴↑𝑟𝑦)↑𝑟0) ⊆ (𝐴↑𝑟0))
→ ( I ↾ dom 𝐴)
⊆ (𝐴↑𝑟0)) |
47 | | ssun2 4103 |
. . . . . . . . . . . . . . 15
⊢ ran
(𝐴↑𝑟𝑦) ⊆ (dom (𝐴↑𝑟𝑦) ∪ ran (𝐴↑𝑟𝑦)) |
48 | | ssres2 5908 |
. . . . . . . . . . . . . . 15
⊢ (ran
(𝐴↑𝑟𝑦) ⊆ (dom (𝐴↑𝑟𝑦) ∪ ran (𝐴↑𝑟𝑦)) → ( I ↾ ran (𝐴↑𝑟𝑦)) ⊆ ( I ↾ (dom (𝐴↑𝑟𝑦) ∪ ran (𝐴↑𝑟𝑦)))) |
49 | 47, 48 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ( I
↾ ran (𝐴↑𝑟𝑦)) ⊆ ( I ↾ (dom (𝐴↑𝑟𝑦) ∪ ran (𝐴↑𝑟𝑦))) |
50 | | relexp0g 14661 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴↑𝑟𝑦) ∈ V → ((𝐴↑𝑟𝑦)↑𝑟0) =
( I ↾ (dom (𝐴↑𝑟𝑦) ∪ ran (𝐴↑𝑟𝑦)))) |
51 | 27, 50 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ((𝐴↑𝑟𝑦)↑𝑟0) =
( I ↾ (dom (𝐴↑𝑟𝑦) ∪ ran (𝐴↑𝑟𝑦))) |
52 | 49, 51 | sseqtrri 3954 |
. . . . . . . . . . . . 13
⊢ ( I
↾ ran (𝐴↑𝑟𝑦)) ⊆ ((𝐴↑𝑟𝑦)↑𝑟0) |
53 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ ((𝐴↑𝑟𝑦)↑𝑟0) ⊆ (𝐴↑𝑟0))
→ ((𝐴↑𝑟𝑦)↑𝑟0) ⊆ (𝐴↑𝑟0)) |
54 | 52, 53 | sstrid 3928 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ ((𝐴↑𝑟𝑦)↑𝑟0) ⊆ (𝐴↑𝑟0))
→ ( I ↾ ran (𝐴↑𝑟𝑦)) ⊆ (𝐴↑𝑟0)) |
55 | 46, 54 | unssd 4116 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ ((𝐴↑𝑟𝑦)↑𝑟0) ⊆ (𝐴↑𝑟0))
→ (( I ↾ dom 𝐴)
∪ ( I ↾ ran (𝐴↑𝑟𝑦))) ⊆ (𝐴↑𝑟0)) |
56 | 40, 55 | eqsstrid 3965 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ ((𝐴↑𝑟𝑦)↑𝑟0) ⊆ (𝐴↑𝑟0))
→ ( I ↾ (dom 𝐴
∪ ran (𝐴↑𝑟𝑦))) ⊆ (𝐴↑𝑟0)) |
57 | 56 | 3adant1 1128 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ 𝐴 ∈ 𝑉 ∧ ((𝐴↑𝑟𝑦)↑𝑟0) ⊆ (𝐴↑𝑟0))
→ ( I ↾ (dom 𝐴
∪ ran (𝐴↑𝑟𝑦))) ⊆ (𝐴↑𝑟0)) |
58 | 39, 57 | sstrd 3927 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ 𝐴 ∈ 𝑉 ∧ ((𝐴↑𝑟𝑦)↑𝑟0) ⊆ (𝐴↑𝑟0))
→ (((𝐴↑𝑟𝑦) ∘ 𝐴)↑𝑟0) ⊆ (𝐴↑𝑟0)) |
59 | 26, 58 | eqsstrd 3955 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ 𝐴 ∈ 𝑉 ∧ ((𝐴↑𝑟𝑦)↑𝑟0) ⊆ (𝐴↑𝑟0))
→ ((𝐴↑𝑟(𝑦 +
1))↑𝑟0) ⊆ (𝐴↑𝑟0)) |
60 | 59 | 3exp 1117 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → (𝐴 ∈ 𝑉 → (((𝐴↑𝑟𝑦)↑𝑟0) ⊆ (𝐴↑𝑟0)
→ ((𝐴↑𝑟(𝑦 +
1))↑𝑟0) ⊆ (𝐴↑𝑟0)))) |
61 | 60 | a2d 29 |
. . . . 5
⊢ (𝑦 ∈ ℕ → ((𝐴 ∈ 𝑉 → ((𝐴↑𝑟𝑦)↑𝑟0) ⊆ (𝐴↑𝑟0))
→ (𝐴 ∈ 𝑉 → ((𝐴↑𝑟(𝑦 +
1))↑𝑟0) ⊆ (𝐴↑𝑟0)))) |
62 | 5, 9, 13, 17, 21, 61 | nnind 11921 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝐴 ∈ 𝑉 → ((𝐴↑𝑟𝑁)↑𝑟0) ⊆ (𝐴↑𝑟0))) |
63 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑁 = 0 → (𝐴↑𝑟𝑁) = (𝐴↑𝑟0)) |
64 | 63 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑁 = 0 → ((𝐴↑𝑟𝑁)↑𝑟0) = ((𝐴↑𝑟0)↑𝑟0)) |
65 | | relexp0idm 41212 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → ((𝐴↑𝑟0)↑𝑟0)
= (𝐴↑𝑟0)) |
66 | 64, 65 | sylan9eq 2799 |
. . . . . 6
⊢ ((𝑁 = 0 ∧ 𝐴 ∈ 𝑉) → ((𝐴↑𝑟𝑁)↑𝑟0) = (𝐴↑𝑟0)) |
67 | | eqimss 3973 |
. . . . . 6
⊢ (((𝐴↑𝑟𝑁)↑𝑟0) =
(𝐴↑𝑟0) → ((𝐴↑𝑟𝑁)↑𝑟0)
⊆ (𝐴↑𝑟0)) |
68 | 66, 67 | syl 17 |
. . . . 5
⊢ ((𝑁 = 0 ∧ 𝐴 ∈ 𝑉) → ((𝐴↑𝑟𝑁)↑𝑟0) ⊆ (𝐴↑𝑟0)) |
69 | 68 | ex 412 |
. . . 4
⊢ (𝑁 = 0 → (𝐴 ∈ 𝑉 → ((𝐴↑𝑟𝑁)↑𝑟0) ⊆ (𝐴↑𝑟0))) |
70 | 62, 69 | jaoi 853 |
. . 3
⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝐴 ∈ 𝑉 → ((𝐴↑𝑟𝑁)↑𝑟0) ⊆ (𝐴↑𝑟0))) |
71 | 1, 70 | sylbi 216 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝐴 ∈ 𝑉 → ((𝐴↑𝑟𝑁)↑𝑟0) ⊆ (𝐴↑𝑟0))) |
72 | 71 | impcom 407 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝐴↑𝑟𝑁)↑𝑟0)
⊆ (𝐴↑𝑟0)) |