Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem6 Structured version   Visualization version   GIF version

Theorem stoweidlem6 44708
Description: Lemma for stoweid 44765: two class variables replace two setvar variables, for multiplication of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem6.1 𝑡 𝑓 = 𝐹
stoweidlem6.2 𝑡 𝑔 = 𝐺
stoweidlem6.3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
Assertion
Ref Expression
stoweidlem6 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐺𝑡))) ∈ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑡   𝐴,𝑓,𝑔   𝑓,𝐹,𝑔   𝑇,𝑓,𝑔   𝜑,𝑓,𝑔   𝑔,𝐺
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡)   𝑇(𝑡)   𝐹(𝑡)   𝐺(𝑡,𝑓)

Proof of Theorem stoweidlem6
StepHypRef Expression
1 simp3 1138 . 2 ((𝜑𝐹𝐴𝐺𝐴) → 𝐺𝐴)
2 eleq1 2821 . . . . 5 (𝑔 = 𝐺 → (𝑔𝐴𝐺𝐴))
323anbi3d 1442 . . . 4 (𝑔 = 𝐺 → ((𝜑𝐹𝐴𝑔𝐴) ↔ (𝜑𝐹𝐴𝐺𝐴)))
4 stoweidlem6.2 . . . . . 6 𝑡 𝑔 = 𝐺
5 fveq1 6887 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔𝑡) = (𝐺𝑡))
65oveq2d 7421 . . . . . . 7 (𝑔 = 𝐺 → ((𝐹𝑡) · (𝑔𝑡)) = ((𝐹𝑡) · (𝐺𝑡)))
76adantr 481 . . . . . 6 ((𝑔 = 𝐺𝑡𝑇) → ((𝐹𝑡) · (𝑔𝑡)) = ((𝐹𝑡) · (𝐺𝑡)))
84, 7mpteq2da 5245 . . . . 5 (𝑔 = 𝐺 → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐺𝑡))))
98eleq1d 2818 . . . 4 (𝑔 = 𝐺 → ((𝑡𝑇 ↦ ((𝐹𝑡) · (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐺𝑡))) ∈ 𝐴))
103, 9imbi12d 344 . . 3 (𝑔 = 𝐺 → (((𝜑𝐹𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐺𝑡))) ∈ 𝐴)))
11 simp2 1137 . . . 4 ((𝜑𝐹𝐴𝑔𝐴) → 𝐹𝐴)
12 eleq1 2821 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝐴𝐹𝐴))
13123anbi2d 1441 . . . . . 6 (𝑓 = 𝐹 → ((𝜑𝑓𝐴𝑔𝐴) ↔ (𝜑𝐹𝐴𝑔𝐴)))
14 stoweidlem6.1 . . . . . . . 8 𝑡 𝑓 = 𝐹
15 fveq1 6887 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑡) = (𝐹𝑡))
1615oveq1d 7420 . . . . . . . . 9 (𝑓 = 𝐹 → ((𝑓𝑡) · (𝑔𝑡)) = ((𝐹𝑡) · (𝑔𝑡)))
1716adantr 481 . . . . . . . 8 ((𝑓 = 𝐹𝑡𝑇) → ((𝑓𝑡) · (𝑔𝑡)) = ((𝐹𝑡) · (𝑔𝑡)))
1814, 17mpteq2da 5245 . . . . . . 7 (𝑓 = 𝐹 → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝑔𝑡))))
1918eleq1d 2818 . . . . . 6 (𝑓 = 𝐹 → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝐹𝑡) · (𝑔𝑡))) ∈ 𝐴))
2013, 19imbi12d 344 . . . . 5 (𝑓 = 𝐹 → (((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑𝐹𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝑔𝑡))) ∈ 𝐴)))
21 stoweidlem6.3 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
2220, 21vtoclg 3556 . . . 4 (𝐹𝐴 → ((𝜑𝐹𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝑔𝑡))) ∈ 𝐴))
2311, 22mpcom 38 . . 3 ((𝜑𝐹𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝑔𝑡))) ∈ 𝐴)
2410, 23vtoclg 3556 . 2 (𝐺𝐴 → ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐺𝑡))) ∈ 𝐴))
251, 24mpcom 38 1 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐺𝑡))) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wnf 1785  wcel 2106  cmpt 5230  cfv 6540  (class class class)co 7405   · cmul 11111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-iota 6492  df-fv 6548  df-ov 7408
This theorem is referenced by:  stoweidlem19  44721  stoweidlem22  44724  stoweidlem32  44734  stoweidlem36  44738
  Copyright terms: Public domain W3C validator