Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem6 Structured version   Visualization version   GIF version

Theorem stoweidlem6 43547
Description: Lemma for stoweid 43604: two class variables replace two setvar variables, for multiplication of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem6.1 𝑡 𝑓 = 𝐹
stoweidlem6.2 𝑡 𝑔 = 𝐺
stoweidlem6.3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
Assertion
Ref Expression
stoweidlem6 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐺𝑡))) ∈ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑡   𝐴,𝑓,𝑔   𝑓,𝐹,𝑔   𝑇,𝑓,𝑔   𝜑,𝑓,𝑔   𝑔,𝐺
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡)   𝑇(𝑡)   𝐹(𝑡)   𝐺(𝑡,𝑓)

Proof of Theorem stoweidlem6
StepHypRef Expression
1 simp3 1137 . 2 ((𝜑𝐹𝐴𝐺𝐴) → 𝐺𝐴)
2 eleq1 2826 . . . . 5 (𝑔 = 𝐺 → (𝑔𝐴𝐺𝐴))
323anbi3d 1441 . . . 4 (𝑔 = 𝐺 → ((𝜑𝐹𝐴𝑔𝐴) ↔ (𝜑𝐹𝐴𝐺𝐴)))
4 stoweidlem6.2 . . . . . 6 𝑡 𝑔 = 𝐺
5 fveq1 6773 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔𝑡) = (𝐺𝑡))
65oveq2d 7291 . . . . . . 7 (𝑔 = 𝐺 → ((𝐹𝑡) · (𝑔𝑡)) = ((𝐹𝑡) · (𝐺𝑡)))
76adantr 481 . . . . . 6 ((𝑔 = 𝐺𝑡𝑇) → ((𝐹𝑡) · (𝑔𝑡)) = ((𝐹𝑡) · (𝐺𝑡)))
84, 7mpteq2da 5172 . . . . 5 (𝑔 = 𝐺 → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐺𝑡))))
98eleq1d 2823 . . . 4 (𝑔 = 𝐺 → ((𝑡𝑇 ↦ ((𝐹𝑡) · (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐺𝑡))) ∈ 𝐴))
103, 9imbi12d 345 . . 3 (𝑔 = 𝐺 → (((𝜑𝐹𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐺𝑡))) ∈ 𝐴)))
11 simp2 1136 . . . 4 ((𝜑𝐹𝐴𝑔𝐴) → 𝐹𝐴)
12 eleq1 2826 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝐴𝐹𝐴))
13123anbi2d 1440 . . . . . 6 (𝑓 = 𝐹 → ((𝜑𝑓𝐴𝑔𝐴) ↔ (𝜑𝐹𝐴𝑔𝐴)))
14 stoweidlem6.1 . . . . . . . 8 𝑡 𝑓 = 𝐹
15 fveq1 6773 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑡) = (𝐹𝑡))
1615oveq1d 7290 . . . . . . . . 9 (𝑓 = 𝐹 → ((𝑓𝑡) · (𝑔𝑡)) = ((𝐹𝑡) · (𝑔𝑡)))
1716adantr 481 . . . . . . . 8 ((𝑓 = 𝐹𝑡𝑇) → ((𝑓𝑡) · (𝑔𝑡)) = ((𝐹𝑡) · (𝑔𝑡)))
1814, 17mpteq2da 5172 . . . . . . 7 (𝑓 = 𝐹 → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝑔𝑡))))
1918eleq1d 2823 . . . . . 6 (𝑓 = 𝐹 → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝐹𝑡) · (𝑔𝑡))) ∈ 𝐴))
2013, 19imbi12d 345 . . . . 5 (𝑓 = 𝐹 → (((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑𝐹𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝑔𝑡))) ∈ 𝐴)))
21 stoweidlem6.3 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
2220, 21vtoclg 3505 . . . 4 (𝐹𝐴 → ((𝜑𝐹𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝑔𝑡))) ∈ 𝐴))
2311, 22mpcom 38 . . 3 ((𝜑𝐹𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝑔𝑡))) ∈ 𝐴)
2410, 23vtoclg 3505 . 2 (𝐺𝐴 → ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐺𝑡))) ∈ 𝐴))
251, 24mpcom 38 1 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐺𝑡))) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wnf 1786  wcel 2106  cmpt 5157  cfv 6433  (class class class)co 7275   · cmul 10876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  stoweidlem19  43560  stoweidlem22  43563  stoweidlem32  43573  stoweidlem36  43577
  Copyright terms: Public domain W3C validator