Proof of Theorem stoweidlem6
Step | Hyp | Ref
| Expression |
1 | | simp3 1136 |
. 2
⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → 𝐺 ∈ 𝐴) |
2 | | eleq1 2826 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑔 ∈ 𝐴 ↔ 𝐺 ∈ 𝐴)) |
3 | 2 | 3anbi3d 1440 |
. . . 4
⊢ (𝑔 = 𝐺 → ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) ↔ (𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴))) |
4 | | stoweidlem6.2 |
. . . . . 6
⊢
Ⅎ𝑡 𝑔 = 𝐺 |
5 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑔‘𝑡) = (𝐺‘𝑡)) |
6 | 5 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((𝐹‘𝑡) · (𝑔‘𝑡)) = ((𝐹‘𝑡) · (𝐺‘𝑡))) |
7 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) · (𝑔‘𝑡)) = ((𝐹‘𝑡) · (𝐺‘𝑡))) |
8 | 4, 7 | mpteq2da 5168 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) · (𝑔‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) · (𝐺‘𝑡)))) |
9 | 8 | eleq1d 2823 |
. . . 4
⊢ (𝑔 = 𝐺 → ((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) · (𝐺‘𝑡))) ∈ 𝐴)) |
10 | 3, 9 | imbi12d 344 |
. . 3
⊢ (𝑔 = 𝐺 → (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) · (𝐺‘𝑡))) ∈ 𝐴))) |
11 | | simp2 1135 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → 𝐹 ∈ 𝐴) |
12 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑓 ∈ 𝐴 ↔ 𝐹 ∈ 𝐴)) |
13 | 12 | 3anbi2d 1439 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) ↔ (𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴))) |
14 | | stoweidlem6.1 |
. . . . . . . 8
⊢
Ⅎ𝑡 𝑓 = 𝐹 |
15 | | fveq1 6755 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (𝑓‘𝑡) = (𝐹‘𝑡)) |
16 | 15 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑡) · (𝑔‘𝑡)) = ((𝐹‘𝑡) · (𝑔‘𝑡))) |
17 | 16 | adantr 480 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑡 ∈ 𝑇) → ((𝑓‘𝑡) · (𝑔‘𝑡)) = ((𝐹‘𝑡) · (𝑔‘𝑡))) |
18 | 14, 17 | mpteq2da 5168 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) · (𝑔‘𝑡)))) |
19 | 18 | eleq1d 2823 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ((𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴)) |
20 | 13, 19 | imbi12d 344 |
. . . . 5
⊢ (𝑓 = 𝐹 → (((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴))) |
21 | | stoweidlem6.3 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
22 | 20, 21 | vtoclg 3495 |
. . . 4
⊢ (𝐹 ∈ 𝐴 → ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴)) |
23 | 11, 22 | mpcom 38 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
24 | 10, 23 | vtoclg 3495 |
. 2
⊢ (𝐺 ∈ 𝐴 → ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) · (𝐺‘𝑡))) ∈ 𝐴)) |
25 | 1, 24 | mpcom 38 |
1
⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) · (𝐺‘𝑡))) ∈ 𝐴) |