Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem7 Structured version   Visualization version   GIF version

Theorem stoweidlem7 46005
Description: This lemma is used to prove that qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91, (at the top of page 91), is such that qn < ε on 𝑇𝑈, and qn > 1 - ε on 𝑉. Here it is proven that, for 𝑛 large enough, 1-(k*δ/2)^n > 1 - ε , and 1/(k*δ)^n < ε. The variable 𝐴 is used to represent (k*δ) in the paper, and 𝐵 is used to represent (k*δ/2). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem7.1 𝐹 = (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖))
stoweidlem7.2 𝐺 = (𝑖 ∈ ℕ0 ↦ (𝐵𝑖))
stoweidlem7.3 (𝜑𝐴 ∈ ℝ)
stoweidlem7.4 (𝜑 → 1 < 𝐴)
stoweidlem7.5 (𝜑𝐵 ∈ ℝ+)
stoweidlem7.6 (𝜑𝐵 < 1)
stoweidlem7.7 (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
stoweidlem7 (𝜑 → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸))
Distinct variable groups:   𝑖,𝑛,𝐴   𝐵,𝑖,𝑛   𝑖,𝐸,𝑛   𝜑,𝑖,𝑛   𝑛,𝐹   𝑛,𝐺
Allowed substitution hints:   𝐹(𝑖)   𝐺(𝑖)

Proof of Theorem stoweidlem7
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12836 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 12564 . . . . 5 (𝜑 → 1 ∈ ℤ)
3 stoweidlem7.7 . . . . 5 (𝜑𝐸 ∈ ℝ+)
4 stoweidlem7.2 . . . . . 6 𝐺 = (𝑖 ∈ ℕ0 ↦ (𝐵𝑖))
5 oveq2 7395 . . . . . 6 (𝑖 = 𝑘 → (𝐵𝑖) = (𝐵𝑘))
6 nnnn0 12449 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
76adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
8 stoweidlem7.5 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ+)
98rpcnd 12997 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
109adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
1110, 7expcld 14111 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℂ)
124, 5, 7, 11fvmptd3 6991 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = (𝐵𝑘))
13 1red 11175 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
1413renegcld 11605 . . . . . . . . 9 (𝜑 → -1 ∈ ℝ)
15 0red 11177 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
168rpred 12995 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
17 neg1lt0 12174 . . . . . . . . . 10 -1 < 0
1817a1i 11 . . . . . . . . 9 (𝜑 → -1 < 0)
198rpgt0d 12998 . . . . . . . . 9 (𝜑 → 0 < 𝐵)
2014, 15, 16, 18, 19lttrd 11335 . . . . . . . 8 (𝜑 → -1 < 𝐵)
21 stoweidlem7.6 . . . . . . . 8 (𝜑𝐵 < 1)
2216, 13absltd 15398 . . . . . . . 8 (𝜑 → ((abs‘𝐵) < 1 ↔ (-1 < 𝐵𝐵 < 1)))
2320, 21, 22mpbir2and 713 . . . . . . 7 (𝜑 → (abs‘𝐵) < 1)
249, 23expcnv 15830 . . . . . 6 (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝐵𝑖)) ⇝ 0)
254, 24eqbrtrid 5142 . . . . 5 (𝜑𝐺 ⇝ 0)
261, 2, 3, 12, 25climi 15476 . . . 4 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸))
27 r19.26 3091 . . . . . . . . . . . . . 14 (∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸) ↔ (∀𝑘 ∈ (ℤ𝑛)(𝐵𝑘) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐵𝑘) − 0)) < 𝐸))
2827simprbi 496 . . . . . . . . . . . . 13 (∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐵𝑘) − 0)) < 𝐸)
2928ad2antlr 727 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐵𝑘) − 0)) < 𝐸)
30 oveq2 7395 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
3130oveq1d 7402 . . . . . . . . . . . . . . 15 (𝑘 = 𝑖 → ((𝐵𝑘) − 0) = ((𝐵𝑖) − 0))
3231fveq2d 6862 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (abs‘((𝐵𝑘) − 0)) = (abs‘((𝐵𝑖) − 0)))
3332breq1d 5117 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((abs‘((𝐵𝑘) − 0)) < 𝐸 ↔ (abs‘((𝐵𝑖) − 0)) < 𝐸))
3433rspccva 3587 . . . . . . . . . . . 12 ((∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐵𝑘) − 0)) < 𝐸𝑖 ∈ (ℤ𝑛)) → (abs‘((𝐵𝑖) − 0)) < 𝐸)
3529, 34sylancom 588 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (abs‘((𝐵𝑖) − 0)) < 𝐸)
36 simplll 774 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝜑)
3736, 8syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝐵 ∈ ℝ+)
3837rpred 12995 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝐵 ∈ ℝ)
39 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
40 nnnn0 12449 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
4139, 40syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ0)
42 eluznn0 12876 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑖 ∈ (ℤ𝑛)) → 𝑖 ∈ ℕ0)
4341, 42sylancom 588 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑖 ∈ ℕ0)
4438, 43reexpcld 14128 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐵𝑖) ∈ ℝ)
45 rpre 12960 . . . . . . . . . . . . 13 (𝐸 ∈ ℝ+𝐸 ∈ ℝ)
4636, 3, 453syl 18 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝐸 ∈ ℝ)
47 recn 11158 . . . . . . . . . . . . . . . . 17 ((𝐵𝑖) ∈ ℝ → (𝐵𝑖) ∈ ℂ)
4847subid1d 11522 . . . . . . . . . . . . . . . 16 ((𝐵𝑖) ∈ ℝ → ((𝐵𝑖) − 0) = (𝐵𝑖))
4948adantr 480 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((𝐵𝑖) − 0) = (𝐵𝑖))
5049fveq2d 6862 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → (abs‘((𝐵𝑖) − 0)) = (abs‘(𝐵𝑖)))
5150breq1d 5117 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐵𝑖) − 0)) < 𝐸 ↔ (abs‘(𝐵𝑖)) < 𝐸))
52 abslt 15281 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘(𝐵𝑖)) < 𝐸 ↔ (-𝐸 < (𝐵𝑖) ∧ (𝐵𝑖) < 𝐸)))
5351, 52bitrd 279 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐵𝑖) − 0)) < 𝐸 ↔ (-𝐸 < (𝐵𝑖) ∧ (𝐵𝑖) < 𝐸)))
5444, 46, 53syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → ((abs‘((𝐵𝑖) − 0)) < 𝐸 ↔ (-𝐸 < (𝐵𝑖) ∧ (𝐵𝑖) < 𝐸)))
5535, 54mpbid 232 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (-𝐸 < (𝐵𝑖) ∧ (𝐵𝑖) < 𝐸))
5655simprd 495 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐵𝑖) < 𝐸)
57 eluznn 12877 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑖 ∈ ℕ)
5839, 57sylancom 588 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑖 ∈ ℕ)
5916adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → 𝐵 ∈ ℝ)
60 nnnn0 12449 . . . . . . . . . . . . 13 (𝑖 ∈ ℕ → 𝑖 ∈ ℕ0)
6160adantl 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ0)
6259, 61reexpcld 14128 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → (𝐵𝑖) ∈ ℝ)
633rpred 12995 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
6463adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → 𝐸 ∈ ℝ)
65 1red 11175 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → 1 ∈ ℝ)
6662, 64, 65ltsub2d 11788 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → ((𝐵𝑖) < 𝐸 ↔ (1 − 𝐸) < (1 − (𝐵𝑖))))
6736, 58, 66syl2anc 584 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → ((𝐵𝑖) < 𝐸 ↔ (1 − 𝐸) < (1 − (𝐵𝑖))))
6856, 67mpbid 232 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (1 − 𝐸) < (1 − (𝐵𝑖)))
6968ralrimiva 3125 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) → ∀𝑖 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑖)))
7030oveq2d 7403 . . . . . . . . 9 (𝑘 = 𝑖 → (1 − (𝐵𝑘)) = (1 − (𝐵𝑖)))
7170breq2d 5119 . . . . . . . 8 (𝑘 = 𝑖 → ((1 − 𝐸) < (1 − (𝐵𝑘)) ↔ (1 − 𝐸) < (1 − (𝐵𝑖))))
7271cbvralvw 3215 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘)) ↔ ∀𝑖 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑖)))
7369, 72sylibr 234 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) → ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘)))
7473ex 412 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸) → ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘))))
7574reximdva 3146 . . . 4 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘))))
7626, 75mpd 15 . . 3 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘)))
77 stoweidlem7.1 . . . . . 6 𝐹 = (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖))
78 oveq2 7395 . . . . . 6 (𝑖 = 𝑘 → ((1 / 𝐴)↑𝑖) = ((1 / 𝐴)↑𝑘))
79 stoweidlem7.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
8079recnd 11202 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
81 0lt1 11700 . . . . . . . . . . . 12 0 < 1
8281a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 1)
83 stoweidlem7.4 . . . . . . . . . . 11 (𝜑 → 1 < 𝐴)
8415, 13, 79, 82, 83lttrd 11335 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
8584gt0ne0d 11742 . . . . . . . . 9 (𝜑𝐴 ≠ 0)
8680, 85reccld 11951 . . . . . . . 8 (𝜑 → (1 / 𝐴) ∈ ℂ)
8786adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (1 / 𝐴) ∈ ℂ)
8887, 7expcld 14111 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((1 / 𝐴)↑𝑘) ∈ ℂ)
8977, 78, 7, 88fvmptd3 6991 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = ((1 / 𝐴)↑𝑘))
9079, 85rereccld 12009 . . . . . . . . 9 (𝜑 → (1 / 𝐴) ∈ ℝ)
9179, 84recgt0d 12117 . . . . . . . . 9 (𝜑 → 0 < (1 / 𝐴))
9214, 15, 90, 18, 91lttrd 11335 . . . . . . . 8 (𝜑 → -1 < (1 / 𝐴))
93 ltdiv23 12074 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 ∈ ℝ ∧ 0 < 1)) → ((1 / 𝐴) < 1 ↔ (1 / 1) < 𝐴))
9413, 79, 84, 13, 82, 93syl122anc 1381 . . . . . . . . . 10 (𝜑 → ((1 / 𝐴) < 1 ↔ (1 / 1) < 𝐴))
95 1cnd 11169 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
9695div1d 11950 . . . . . . . . . . 11 (𝜑 → (1 / 1) = 1)
9796breq1d 5117 . . . . . . . . . 10 (𝜑 → ((1 / 1) < 𝐴 ↔ 1 < 𝐴))
9894, 97bitrd 279 . . . . . . . . 9 (𝜑 → ((1 / 𝐴) < 1 ↔ 1 < 𝐴))
9983, 98mpbird 257 . . . . . . . 8 (𝜑 → (1 / 𝐴) < 1)
10090, 13absltd 15398 . . . . . . . 8 (𝜑 → ((abs‘(1 / 𝐴)) < 1 ↔ (-1 < (1 / 𝐴) ∧ (1 / 𝐴) < 1)))
10192, 99, 100mpbir2and 713 . . . . . . 7 (𝜑 → (abs‘(1 / 𝐴)) < 1)
10286, 101expcnv 15830 . . . . . 6 (𝜑 → (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖)) ⇝ 0)
10377, 102eqbrtrid 5142 . . . . 5 (𝜑𝐹 ⇝ 0)
1041, 2, 3, 89, 103climi2 15477 . . . 4 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸)
105 simpll 766 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝜑)
106 uznnssnn 12854 . . . . . . . . 9 (𝑛 ∈ ℕ → (ℤ𝑛) ⊆ ℕ)
107106ad2antlr 727 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℤ𝑛) ⊆ ℕ)
108 simpr 484 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ (ℤ𝑛))
109107, 108sseldd 3947 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
11088subid1d 11522 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((1 / 𝐴)↑𝑘) − 0) = ((1 / 𝐴)↑𝑘))
111110fveq2d 6862 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (abs‘(((1 / 𝐴)↑𝑘) − 0)) = (abs‘((1 / 𝐴)↑𝑘)))
11290adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (1 / 𝐴) ∈ ℝ)
113112, 7reexpcld 14128 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((1 / 𝐴)↑𝑘) ∈ ℝ)
11415, 90, 91ltled 11322 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (1 / 𝐴))
115114adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (1 / 𝐴))
116112, 7, 115expge0d 14129 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((1 / 𝐴)↑𝑘))
117113, 116absidd 15389 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (abs‘((1 / 𝐴)↑𝑘)) = ((1 / 𝐴)↑𝑘))
118111, 117eqtrd 2764 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (abs‘(((1 / 𝐴)↑𝑘) − 0)) = ((1 / 𝐴)↑𝑘))
119118breq1d 5117 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 ↔ ((1 / 𝐴)↑𝑘) < 𝐸))
120119biimpd 229 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ((1 / 𝐴)↑𝑘) < 𝐸))
121105, 109, 120syl2anc 584 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ((1 / 𝐴)↑𝑘) < 𝐸))
122121ralimdva 3145 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)(abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ∀𝑘 ∈ (ℤ𝑛)((1 / 𝐴)↑𝑘) < 𝐸))
123122reximdva 3146 . . . 4 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 / 𝐴)↑𝑘) < 𝐸))
124104, 123mpd 15 . . 3 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 / 𝐴)↑𝑘) < 𝐸)
1251rexanuz2 15316 . . 3 (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) ↔ (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 / 𝐴)↑𝑘) < 𝐸))
12676, 124, 125sylanbrc 583 . 2 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸))
127 simpr 484 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸))
128 nnz 12550 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
129 uzid 12808 . . . . . . . 8 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
130128, 129syl 17 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ𝑛))
131130ad2antlr 727 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → 𝑛 ∈ (ℤ𝑛))
132 oveq2 7395 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐵𝑘) = (𝐵𝑛))
133132oveq2d 7403 . . . . . . . . 9 (𝑘 = 𝑛 → (1 − (𝐵𝑘)) = (1 − (𝐵𝑛)))
134133breq2d 5119 . . . . . . . 8 (𝑘 = 𝑛 → ((1 − 𝐸) < (1 − (𝐵𝑘)) ↔ (1 − 𝐸) < (1 − (𝐵𝑛))))
135 oveq2 7395 . . . . . . . . 9 (𝑘 = 𝑛 → ((1 / 𝐴)↑𝑘) = ((1 / 𝐴)↑𝑛))
136135breq1d 5117 . . . . . . . 8 (𝑘 = 𝑛 → (((1 / 𝐴)↑𝑘) < 𝐸 ↔ ((1 / 𝐴)↑𝑛) < 𝐸))
137134, 136anbi12d 632 . . . . . . 7 (𝑘 = 𝑛 → (((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) ↔ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸)))
138137rspccva 3587 . . . . . 6 ((∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) ∧ 𝑛 ∈ (ℤ𝑛)) → ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸))
139127, 131, 138syl2anc 584 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸))
140 1cnd 11169 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℂ)
14180, 85jca 511 . . . . . . . . . . 11 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
142141adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
14340adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
144 expdiv 14078 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ0) → ((1 / 𝐴)↑𝑛) = ((1↑𝑛) / (𝐴𝑛)))
145140, 142, 143, 144syl3anc 1373 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1 / 𝐴)↑𝑛) = ((1↑𝑛) / (𝐴𝑛)))
146128adantl 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
147 1exp 14056 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
148146, 147syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1↑𝑛) = 1)
149148oveq1d 7402 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1↑𝑛) / (𝐴𝑛)) = (1 / (𝐴𝑛)))
150145, 149eqtrd 2764 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((1 / 𝐴)↑𝑛) = (1 / (𝐴𝑛)))
151150breq1d 5117 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((1 / 𝐴)↑𝑛) < 𝐸 ↔ (1 / (𝐴𝑛)) < 𝐸))
152151adantr 480 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → (((1 / 𝐴)↑𝑛) < 𝐸 ↔ (1 / (𝐴𝑛)) < 𝐸))
153152anbi2d 630 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → (((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸) ↔ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸)))
154139, 153mpbid 232 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸))
155154ex 412 . . 3 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) → ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸)))
156155reximdva 3146 . 2 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸)))
157126, 156mpd 15 1 (𝜑 → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3914   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  0cn0 12442  cz 12529  cuz 12793  +crp 12951  cexp 14026  abscabs 15200  cli 15450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fl 13754  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455
This theorem is referenced by:  stoweidlem49  46047
  Copyright terms: Public domain W3C validator