Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem7 Structured version   Visualization version   GIF version

Theorem stoweidlem7 45928
Description: This lemma is used to prove that qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91, (at the top of page 91), is such that qn < ε on 𝑇𝑈, and qn > 1 - ε on 𝑉. Here it is proven that, for 𝑛 large enough, 1-(k*δ/2)^n > 1 - ε , and 1/(k*δ)^n < ε. The variable 𝐴 is used to represent (k*δ) in the paper, and 𝐵 is used to represent (k*δ/2). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem7.1 𝐹 = (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖))
stoweidlem7.2 𝐺 = (𝑖 ∈ ℕ0 ↦ (𝐵𝑖))
stoweidlem7.3 (𝜑𝐴 ∈ ℝ)
stoweidlem7.4 (𝜑 → 1 < 𝐴)
stoweidlem7.5 (𝜑𝐵 ∈ ℝ+)
stoweidlem7.6 (𝜑𝐵 < 1)
stoweidlem7.7 (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
stoweidlem7 (𝜑 → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸))
Distinct variable groups:   𝑖,𝑛,𝐴   𝐵,𝑖,𝑛   𝑖,𝐸,𝑛   𝜑,𝑖,𝑛   𝑛,𝐹   𝑛,𝐺
Allowed substitution hints:   𝐹(𝑖)   𝐺(𝑖)

Proof of Theorem stoweidlem7
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12946 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 12674 . . . . 5 (𝜑 → 1 ∈ ℤ)
3 stoweidlem7.7 . . . . 5 (𝜑𝐸 ∈ ℝ+)
4 stoweidlem7.2 . . . . . 6 𝐺 = (𝑖 ∈ ℕ0 ↦ (𝐵𝑖))
5 oveq2 7456 . . . . . 6 (𝑖 = 𝑘 → (𝐵𝑖) = (𝐵𝑘))
6 nnnn0 12560 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
76adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
8 stoweidlem7.5 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ+)
98rpcnd 13101 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
109adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
1110, 7expcld 14196 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℂ)
124, 5, 7, 11fvmptd3 7052 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = (𝐵𝑘))
13 1red 11291 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
1413renegcld 11717 . . . . . . . . 9 (𝜑 → -1 ∈ ℝ)
15 0red 11293 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
168rpred 13099 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
17 neg1lt0 12410 . . . . . . . . . 10 -1 < 0
1817a1i 11 . . . . . . . . 9 (𝜑 → -1 < 0)
198rpgt0d 13102 . . . . . . . . 9 (𝜑 → 0 < 𝐵)
2014, 15, 16, 18, 19lttrd 11451 . . . . . . . 8 (𝜑 → -1 < 𝐵)
21 stoweidlem7.6 . . . . . . . 8 (𝜑𝐵 < 1)
2216, 13absltd 15478 . . . . . . . 8 (𝜑 → ((abs‘𝐵) < 1 ↔ (-1 < 𝐵𝐵 < 1)))
2320, 21, 22mpbir2and 712 . . . . . . 7 (𝜑 → (abs‘𝐵) < 1)
249, 23expcnv 15912 . . . . . 6 (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝐵𝑖)) ⇝ 0)
254, 24eqbrtrid 5201 . . . . 5 (𝜑𝐺 ⇝ 0)
261, 2, 3, 12, 25climi 15556 . . . 4 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸))
27 r19.26 3117 . . . . . . . . . . . . . 14 (∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸) ↔ (∀𝑘 ∈ (ℤ𝑛)(𝐵𝑘) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐵𝑘) − 0)) < 𝐸))
2827simprbi 496 . . . . . . . . . . . . 13 (∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐵𝑘) − 0)) < 𝐸)
2928ad2antlr 726 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐵𝑘) − 0)) < 𝐸)
30 oveq2 7456 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
3130oveq1d 7463 . . . . . . . . . . . . . . 15 (𝑘 = 𝑖 → ((𝐵𝑘) − 0) = ((𝐵𝑖) − 0))
3231fveq2d 6924 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (abs‘((𝐵𝑘) − 0)) = (abs‘((𝐵𝑖) − 0)))
3332breq1d 5176 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((abs‘((𝐵𝑘) − 0)) < 𝐸 ↔ (abs‘((𝐵𝑖) − 0)) < 𝐸))
3433rspccva 3634 . . . . . . . . . . . 12 ((∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐵𝑘) − 0)) < 𝐸𝑖 ∈ (ℤ𝑛)) → (abs‘((𝐵𝑖) − 0)) < 𝐸)
3529, 34sylancom 587 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (abs‘((𝐵𝑖) − 0)) < 𝐸)
36 simplll 774 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝜑)
3736, 8syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝐵 ∈ ℝ+)
3837rpred 13099 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝐵 ∈ ℝ)
39 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
40 nnnn0 12560 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
4139, 40syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ0)
42 eluznn0 12982 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑖 ∈ (ℤ𝑛)) → 𝑖 ∈ ℕ0)
4341, 42sylancom 587 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑖 ∈ ℕ0)
4438, 43reexpcld 14213 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐵𝑖) ∈ ℝ)
45 rpre 13065 . . . . . . . . . . . . 13 (𝐸 ∈ ℝ+𝐸 ∈ ℝ)
4636, 3, 453syl 18 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝐸 ∈ ℝ)
47 recn 11274 . . . . . . . . . . . . . . . . 17 ((𝐵𝑖) ∈ ℝ → (𝐵𝑖) ∈ ℂ)
4847subid1d 11636 . . . . . . . . . . . . . . . 16 ((𝐵𝑖) ∈ ℝ → ((𝐵𝑖) − 0) = (𝐵𝑖))
4948adantr 480 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((𝐵𝑖) − 0) = (𝐵𝑖))
5049fveq2d 6924 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → (abs‘((𝐵𝑖) − 0)) = (abs‘(𝐵𝑖)))
5150breq1d 5176 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐵𝑖) − 0)) < 𝐸 ↔ (abs‘(𝐵𝑖)) < 𝐸))
52 abslt 15363 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘(𝐵𝑖)) < 𝐸 ↔ (-𝐸 < (𝐵𝑖) ∧ (𝐵𝑖) < 𝐸)))
5351, 52bitrd 279 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐵𝑖) − 0)) < 𝐸 ↔ (-𝐸 < (𝐵𝑖) ∧ (𝐵𝑖) < 𝐸)))
5444, 46, 53syl2anc 583 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → ((abs‘((𝐵𝑖) − 0)) < 𝐸 ↔ (-𝐸 < (𝐵𝑖) ∧ (𝐵𝑖) < 𝐸)))
5535, 54mpbid 232 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (-𝐸 < (𝐵𝑖) ∧ (𝐵𝑖) < 𝐸))
5655simprd 495 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐵𝑖) < 𝐸)
57 eluznn 12983 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑖 ∈ ℕ)
5839, 57sylancom 587 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑖 ∈ ℕ)
5916adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → 𝐵 ∈ ℝ)
60 nnnn0 12560 . . . . . . . . . . . . 13 (𝑖 ∈ ℕ → 𝑖 ∈ ℕ0)
6160adantl 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ0)
6259, 61reexpcld 14213 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → (𝐵𝑖) ∈ ℝ)
633rpred 13099 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
6463adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → 𝐸 ∈ ℝ)
65 1red 11291 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → 1 ∈ ℝ)
6662, 64, 65ltsub2d 11900 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → ((𝐵𝑖) < 𝐸 ↔ (1 − 𝐸) < (1 − (𝐵𝑖))))
6736, 58, 66syl2anc 583 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → ((𝐵𝑖) < 𝐸 ↔ (1 − 𝐸) < (1 − (𝐵𝑖))))
6856, 67mpbid 232 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (1 − 𝐸) < (1 − (𝐵𝑖)))
6968ralrimiva 3152 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) → ∀𝑖 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑖)))
7030oveq2d 7464 . . . . . . . . 9 (𝑘 = 𝑖 → (1 − (𝐵𝑘)) = (1 − (𝐵𝑖)))
7170breq2d 5178 . . . . . . . 8 (𝑘 = 𝑖 → ((1 − 𝐸) < (1 − (𝐵𝑘)) ↔ (1 − 𝐸) < (1 − (𝐵𝑖))))
7271cbvralvw 3243 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘)) ↔ ∀𝑖 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑖)))
7369, 72sylibr 234 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) → ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘)))
7473ex 412 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸) → ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘))))
7574reximdva 3174 . . . 4 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘))))
7626, 75mpd 15 . . 3 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘)))
77 stoweidlem7.1 . . . . . 6 𝐹 = (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖))
78 oveq2 7456 . . . . . 6 (𝑖 = 𝑘 → ((1 / 𝐴)↑𝑖) = ((1 / 𝐴)↑𝑘))
79 stoweidlem7.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
8079recnd 11318 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
81 0lt1 11812 . . . . . . . . . . . 12 0 < 1
8281a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 1)
83 stoweidlem7.4 . . . . . . . . . . 11 (𝜑 → 1 < 𝐴)
8415, 13, 79, 82, 83lttrd 11451 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
8584gt0ne0d 11854 . . . . . . . . 9 (𝜑𝐴 ≠ 0)
8680, 85reccld 12063 . . . . . . . 8 (𝜑 → (1 / 𝐴) ∈ ℂ)
8786adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (1 / 𝐴) ∈ ℂ)
8887, 7expcld 14196 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((1 / 𝐴)↑𝑘) ∈ ℂ)
8977, 78, 7, 88fvmptd3 7052 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = ((1 / 𝐴)↑𝑘))
9079, 85rereccld 12121 . . . . . . . . 9 (𝜑 → (1 / 𝐴) ∈ ℝ)
9179, 84recgt0d 12229 . . . . . . . . 9 (𝜑 → 0 < (1 / 𝐴))
9214, 15, 90, 18, 91lttrd 11451 . . . . . . . 8 (𝜑 → -1 < (1 / 𝐴))
93 ltdiv23 12186 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 ∈ ℝ ∧ 0 < 1)) → ((1 / 𝐴) < 1 ↔ (1 / 1) < 𝐴))
9413, 79, 84, 13, 82, 93syl122anc 1379 . . . . . . . . . 10 (𝜑 → ((1 / 𝐴) < 1 ↔ (1 / 1) < 𝐴))
95 1cnd 11285 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
9695div1d 12062 . . . . . . . . . . 11 (𝜑 → (1 / 1) = 1)
9796breq1d 5176 . . . . . . . . . 10 (𝜑 → ((1 / 1) < 𝐴 ↔ 1 < 𝐴))
9894, 97bitrd 279 . . . . . . . . 9 (𝜑 → ((1 / 𝐴) < 1 ↔ 1 < 𝐴))
9983, 98mpbird 257 . . . . . . . 8 (𝜑 → (1 / 𝐴) < 1)
10090, 13absltd 15478 . . . . . . . 8 (𝜑 → ((abs‘(1 / 𝐴)) < 1 ↔ (-1 < (1 / 𝐴) ∧ (1 / 𝐴) < 1)))
10192, 99, 100mpbir2and 712 . . . . . . 7 (𝜑 → (abs‘(1 / 𝐴)) < 1)
10286, 101expcnv 15912 . . . . . 6 (𝜑 → (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖)) ⇝ 0)
10377, 102eqbrtrid 5201 . . . . 5 (𝜑𝐹 ⇝ 0)
1041, 2, 3, 89, 103climi2 15557 . . . 4 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸)
105 simpll 766 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝜑)
106 uznnssnn 12960 . . . . . . . . 9 (𝑛 ∈ ℕ → (ℤ𝑛) ⊆ ℕ)
107106ad2antlr 726 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℤ𝑛) ⊆ ℕ)
108 simpr 484 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ (ℤ𝑛))
109107, 108sseldd 4009 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
11088subid1d 11636 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((1 / 𝐴)↑𝑘) − 0) = ((1 / 𝐴)↑𝑘))
111110fveq2d 6924 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (abs‘(((1 / 𝐴)↑𝑘) − 0)) = (abs‘((1 / 𝐴)↑𝑘)))
11290adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (1 / 𝐴) ∈ ℝ)
113112, 7reexpcld 14213 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((1 / 𝐴)↑𝑘) ∈ ℝ)
11415, 90, 91ltled 11438 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (1 / 𝐴))
115114adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (1 / 𝐴))
116112, 7, 115expge0d 14214 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((1 / 𝐴)↑𝑘))
117113, 116absidd 15471 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (abs‘((1 / 𝐴)↑𝑘)) = ((1 / 𝐴)↑𝑘))
118111, 117eqtrd 2780 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (abs‘(((1 / 𝐴)↑𝑘) − 0)) = ((1 / 𝐴)↑𝑘))
119118breq1d 5176 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 ↔ ((1 / 𝐴)↑𝑘) < 𝐸))
120119biimpd 229 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ((1 / 𝐴)↑𝑘) < 𝐸))
121105, 109, 120syl2anc 583 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ((1 / 𝐴)↑𝑘) < 𝐸))
122121ralimdva 3173 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)(abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ∀𝑘 ∈ (ℤ𝑛)((1 / 𝐴)↑𝑘) < 𝐸))
123122reximdva 3174 . . . 4 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 / 𝐴)↑𝑘) < 𝐸))
124104, 123mpd 15 . . 3 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 / 𝐴)↑𝑘) < 𝐸)
1251rexanuz2 15398 . . 3 (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) ↔ (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 / 𝐴)↑𝑘) < 𝐸))
12676, 124, 125sylanbrc 582 . 2 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸))
127 simpr 484 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸))
128 nnz 12660 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
129 uzid 12918 . . . . . . . 8 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
130128, 129syl 17 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ𝑛))
131130ad2antlr 726 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → 𝑛 ∈ (ℤ𝑛))
132 oveq2 7456 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐵𝑘) = (𝐵𝑛))
133132oveq2d 7464 . . . . . . . . 9 (𝑘 = 𝑛 → (1 − (𝐵𝑘)) = (1 − (𝐵𝑛)))
134133breq2d 5178 . . . . . . . 8 (𝑘 = 𝑛 → ((1 − 𝐸) < (1 − (𝐵𝑘)) ↔ (1 − 𝐸) < (1 − (𝐵𝑛))))
135 oveq2 7456 . . . . . . . . 9 (𝑘 = 𝑛 → ((1 / 𝐴)↑𝑘) = ((1 / 𝐴)↑𝑛))
136135breq1d 5176 . . . . . . . 8 (𝑘 = 𝑛 → (((1 / 𝐴)↑𝑘) < 𝐸 ↔ ((1 / 𝐴)↑𝑛) < 𝐸))
137134, 136anbi12d 631 . . . . . . 7 (𝑘 = 𝑛 → (((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) ↔ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸)))
138137rspccva 3634 . . . . . 6 ((∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) ∧ 𝑛 ∈ (ℤ𝑛)) → ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸))
139127, 131, 138syl2anc 583 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸))
140 1cnd 11285 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℂ)
14180, 85jca 511 . . . . . . . . . . 11 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
142141adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
14340adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
144 expdiv 14164 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ0) → ((1 / 𝐴)↑𝑛) = ((1↑𝑛) / (𝐴𝑛)))
145140, 142, 143, 144syl3anc 1371 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1 / 𝐴)↑𝑛) = ((1↑𝑛) / (𝐴𝑛)))
146128adantl 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
147 1exp 14142 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
148146, 147syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1↑𝑛) = 1)
149148oveq1d 7463 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1↑𝑛) / (𝐴𝑛)) = (1 / (𝐴𝑛)))
150145, 149eqtrd 2780 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((1 / 𝐴)↑𝑛) = (1 / (𝐴𝑛)))
151150breq1d 5176 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((1 / 𝐴)↑𝑛) < 𝐸 ↔ (1 / (𝐴𝑛)) < 𝐸))
152151adantr 480 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → (((1 / 𝐴)↑𝑛) < 𝐸 ↔ (1 / (𝐴𝑛)) < 𝐸))
153152anbi2d 629 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → (((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸) ↔ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸)))
154139, 153mpbid 232 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸))
155154ex 412 . . 3 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) → ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸)))
156155reximdva 3174 . 2 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸)))
157126, 156mpd 15 1 (𝜑 → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  0cn0 12553  cz 12639  cuz 12903  +crp 13057  cexp 14112  abscabs 15283  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535
This theorem is referenced by:  stoweidlem49  45970
  Copyright terms: Public domain W3C validator