| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2737 | . 2
⊢
(le‘𝐼) =
(le‘𝐼) | 
| 2 |  | mreclat.i | . . . 4
⊢ 𝐼 = (toInc‘𝐶) | 
| 3 | 2 | ipobas 18576 | . . 3
⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 = (Base‘𝐼)) | 
| 4 | 3 | adantr 480 | . 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → 𝐶 = (Base‘𝐼)) | 
| 5 |  | mrelatlub.l | . . 3
⊢ 𝐿 = (lub‘𝐼) | 
| 6 | 5 | a1i 11 | . 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → 𝐿 = (lub‘𝐼)) | 
| 7 | 2 | ipopos 18581 | . . 3
⊢ 𝐼 ∈ Poset | 
| 8 | 7 | a1i 11 | . 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → 𝐼 ∈ Poset) | 
| 9 |  | simpr 484 | . 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → 𝑈 ⊆ 𝐶) | 
| 10 |  | uniss 4915 | . . . . 5
⊢ (𝑈 ⊆ 𝐶 → ∪ 𝑈 ⊆ ∪ 𝐶) | 
| 11 | 10 | adantl 481 | . . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → ∪ 𝑈 ⊆ ∪ 𝐶) | 
| 12 |  | mreuni 17643 | . . . . 5
⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 =
𝑋) | 
| 13 | 12 | adantr 480 | . . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → ∪ 𝐶 = 𝑋) | 
| 14 | 11, 13 | sseqtrd 4020 | . . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → ∪ 𝑈 ⊆ 𝑋) | 
| 15 |  | mrelatlub.f | . . . 4
⊢ 𝐹 = (mrCls‘𝐶) | 
| 16 | 15 | mrccl 17654 | . . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑈
⊆ 𝑋) → (𝐹‘∪ 𝑈)
∈ 𝐶) | 
| 17 | 14, 16 | syldan 591 | . 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → (𝐹‘∪ 𝑈) ∈ 𝐶) | 
| 18 |  | elssuni 4937 | . . . 4
⊢ (𝑥 ∈ 𝑈 → 𝑥 ⊆ ∪ 𝑈) | 
| 19 | 15 | mrcssid 17660 | . . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑈
⊆ 𝑋) → ∪ 𝑈
⊆ (𝐹‘∪ 𝑈)) | 
| 20 | 14, 19 | syldan 591 | . . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → ∪ 𝑈 ⊆ (𝐹‘∪ 𝑈)) | 
| 21 | 18, 20 | sylan9ssr 3998 | . . 3
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑥 ⊆ (𝐹‘∪ 𝑈)) | 
| 22 |  | simpll 767 | . . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (Moore‘𝑋)) | 
| 23 | 9 | sselda 3983 | . . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐶) | 
| 24 | 17 | adantr 480 | . . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑥 ∈ 𝑈) → (𝐹‘∪ 𝑈) ∈ 𝐶) | 
| 25 | 2, 1 | ipole 18579 | . . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝐶 ∧ (𝐹‘∪ 𝑈) ∈ 𝐶) → (𝑥(le‘𝐼)(𝐹‘∪ 𝑈) ↔ 𝑥 ⊆ (𝐹‘∪ 𝑈))) | 
| 26 | 22, 23, 24, 25 | syl3anc 1373 | . . 3
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑥 ∈ 𝑈) → (𝑥(le‘𝐼)(𝐹‘∪ 𝑈) ↔ 𝑥 ⊆ (𝐹‘∪ 𝑈))) | 
| 27 | 21, 26 | mpbird 257 | . 2
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑥(le‘𝐼)(𝐹‘∪ 𝑈)) | 
| 28 |  | simp1l 1198 | . . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → 𝐶 ∈ (Moore‘𝑋)) | 
| 29 |  | simplll 775 | . . . . . . . . 9
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (Moore‘𝑋)) | 
| 30 |  | simplr 769 | . . . . . . . . . 10
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶) → 𝑈 ⊆ 𝐶) | 
| 31 | 30 | sselda 3983 | . . . . . . . . 9
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐶) | 
| 32 |  | simplr 769 | . . . . . . . . 9
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑦 ∈ 𝐶) | 
| 33 | 2, 1 | ipole 18579 | . . . . . . . . 9
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥(le‘𝐼)𝑦 ↔ 𝑥 ⊆ 𝑦)) | 
| 34 | 29, 31, 32, 33 | syl3anc 1373 | . . . . . . . 8
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → (𝑥(le‘𝐼)𝑦 ↔ 𝑥 ⊆ 𝑦)) | 
| 35 | 34 | biimpd 229 | . . . . . . 7
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → (𝑥(le‘𝐼)𝑦 → 𝑥 ⊆ 𝑦)) | 
| 36 | 35 | ralimdva 3167 | . . . . . 6
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶) → (∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦 → ∀𝑥 ∈ 𝑈 𝑥 ⊆ 𝑦)) | 
| 37 | 36 | 3impia 1118 | . . . . 5
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → ∀𝑥 ∈ 𝑈 𝑥 ⊆ 𝑦) | 
| 38 |  | unissb 4939 | . . . . 5
⊢ (∪ 𝑈
⊆ 𝑦 ↔
∀𝑥 ∈ 𝑈 𝑥 ⊆ 𝑦) | 
| 39 | 37, 38 | sylibr 234 | . . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → ∪ 𝑈 ⊆ 𝑦) | 
| 40 |  | simp2 1138 | . . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → 𝑦 ∈ 𝐶) | 
| 41 | 15 | mrcsscl 17663 | . . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑈
⊆ 𝑦 ∧ 𝑦 ∈ 𝐶) → (𝐹‘∪ 𝑈) ⊆ 𝑦) | 
| 42 | 28, 39, 40, 41 | syl3anc 1373 | . . 3
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → (𝐹‘∪ 𝑈) ⊆ 𝑦) | 
| 43 | 17 | 3ad2ant1 1134 | . . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → (𝐹‘∪ 𝑈) ∈ 𝐶) | 
| 44 | 2, 1 | ipole 18579 | . . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘∪ 𝑈) ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → ((𝐹‘∪ 𝑈)(le‘𝐼)𝑦 ↔ (𝐹‘∪ 𝑈) ⊆ 𝑦)) | 
| 45 | 28, 43, 40, 44 | syl3anc 1373 | . . 3
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → ((𝐹‘∪ 𝑈)(le‘𝐼)𝑦 ↔ (𝐹‘∪ 𝑈) ⊆ 𝑦)) | 
| 46 | 42, 45 | mpbird 257 | . 2
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → (𝐹‘∪ 𝑈)(le‘𝐼)𝑦) | 
| 47 | 1, 4, 6, 8, 9, 17,
27, 46 | poslubdg 18459 | 1
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → (𝐿‘𝑈) = (𝐹‘∪ 𝑈)) |