MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrelatlub Structured version   Visualization version   GIF version

Theorem mrelatlub 18468
Description: Least upper bounds in a Moore space are realized by the closure of the union. (Contributed by Stefan O'Rear, 31-Jan-2015.) See mrelatlubALT 49105 for an alternate proof.
Hypotheses
Ref Expression
mreclat.i 𝐼 = (toInc‘𝐶)
mrelatlub.f 𝐹 = (mrCls‘𝐶)
mrelatlub.l 𝐿 = (lub‘𝐼)
Assertion
Ref Expression
mrelatlub ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → (𝐿𝑈) = (𝐹 𝑈))

Proof of Theorem mrelatlub
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . 2 (le‘𝐼) = (le‘𝐼)
2 mreclat.i . . . 4 𝐼 = (toInc‘𝐶)
32ipobas 18437 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = (Base‘𝐼))
43adantr 480 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → 𝐶 = (Base‘𝐼))
5 mrelatlub.l . . 3 𝐿 = (lub‘𝐼)
65a1i 11 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → 𝐿 = (lub‘𝐼))
72ipopos 18442 . . 3 𝐼 ∈ Poset
87a1i 11 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → 𝐼 ∈ Poset)
9 simpr 484 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → 𝑈𝐶)
10 uniss 4864 . . . . 5 (𝑈𝐶 𝑈 𝐶)
1110adantl 481 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → 𝑈 𝐶)
12 mreuni 17502 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = 𝑋)
1312adantr 480 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → 𝐶 = 𝑋)
1411, 13sseqtrd 3966 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → 𝑈𝑋)
15 mrelatlub.f . . . 4 𝐹 = (mrCls‘𝐶)
1615mrccl 17517 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹 𝑈) ∈ 𝐶)
1714, 16syldan 591 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → (𝐹 𝑈) ∈ 𝐶)
18 elssuni 4887 . . . 4 (𝑥𝑈𝑥 𝑈)
1915mrcssid 17523 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈 ⊆ (𝐹 𝑈))
2014, 19syldan 591 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → 𝑈 ⊆ (𝐹 𝑈))
2118, 20sylan9ssr 3944 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑥𝑈) → 𝑥 ⊆ (𝐹 𝑈))
22 simpll 766 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑥𝑈) → 𝐶 ∈ (Moore‘𝑋))
239sselda 3929 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑥𝑈) → 𝑥𝐶)
2417adantr 480 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑥𝑈) → (𝐹 𝑈) ∈ 𝐶)
252, 1ipole 18440 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶 ∧ (𝐹 𝑈) ∈ 𝐶) → (𝑥(le‘𝐼)(𝐹 𝑈) ↔ 𝑥 ⊆ (𝐹 𝑈)))
2622, 23, 24, 25syl3anc 1373 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑥𝑈) → (𝑥(le‘𝐼)(𝐹 𝑈) ↔ 𝑥 ⊆ (𝐹 𝑈)))
2721, 26mpbird 257 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑥𝑈) → 𝑥(le‘𝐼)(𝐹 𝑈))
28 simp1l 1198 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑥(le‘𝐼)𝑦) → 𝐶 ∈ (Moore‘𝑋))
29 simplll 774 . . . . . . . . 9 ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶) ∧ 𝑥𝑈) → 𝐶 ∈ (Moore‘𝑋))
30 simplr 768 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶) → 𝑈𝐶)
3130sselda 3929 . . . . . . . . 9 ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶) ∧ 𝑥𝑈) → 𝑥𝐶)
32 simplr 768 . . . . . . . . 9 ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶) ∧ 𝑥𝑈) → 𝑦𝐶)
332, 1ipole 18440 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶𝑦𝐶) → (𝑥(le‘𝐼)𝑦𝑥𝑦))
3429, 31, 32, 33syl3anc 1373 . . . . . . . 8 ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶) ∧ 𝑥𝑈) → (𝑥(le‘𝐼)𝑦𝑥𝑦))
3534biimpd 229 . . . . . . 7 ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶) ∧ 𝑥𝑈) → (𝑥(le‘𝐼)𝑦𝑥𝑦))
3635ralimdva 3144 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶) → (∀𝑥𝑈 𝑥(le‘𝐼)𝑦 → ∀𝑥𝑈 𝑥𝑦))
37363impia 1117 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑥(le‘𝐼)𝑦) → ∀𝑥𝑈 𝑥𝑦)
38 unissb 4889 . . . . 5 ( 𝑈𝑦 ↔ ∀𝑥𝑈 𝑥𝑦)
3937, 38sylibr 234 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑥(le‘𝐼)𝑦) → 𝑈𝑦)
40 simp2 1137 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑥(le‘𝐼)𝑦) → 𝑦𝐶)
4115mrcsscl 17526 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑦𝑦𝐶) → (𝐹 𝑈) ⊆ 𝑦)
4228, 39, 40, 41syl3anc 1373 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑥(le‘𝐼)𝑦) → (𝐹 𝑈) ⊆ 𝑦)
43173ad2ant1 1133 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑥(le‘𝐼)𝑦) → (𝐹 𝑈) ∈ 𝐶)
442, 1ipole 18440 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹 𝑈) ∈ 𝐶𝑦𝐶) → ((𝐹 𝑈)(le‘𝐼)𝑦 ↔ (𝐹 𝑈) ⊆ 𝑦))
4528, 43, 40, 44syl3anc 1373 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑥(le‘𝐼)𝑦) → ((𝐹 𝑈)(le‘𝐼)𝑦 ↔ (𝐹 𝑈) ⊆ 𝑦))
4642, 45mpbird 257 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑥(le‘𝐼)𝑦) → (𝐹 𝑈)(le‘𝐼)𝑦)
471, 4, 6, 8, 9, 17, 27, 46poslubdg 18318 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → (𝐿𝑈) = (𝐹 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wss 3897   cuni 4856   class class class wbr 5089  cfv 6481  Basecbs 17120  lecple 17168  Moorecmre 17484  mrClscmrc 17485  Posetcpo 18213  lubclub 18215  toInccipo 18433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-tset 17180  df-ple 17181  df-ocomp 17182  df-mre 17488  df-mrc 17489  df-proset 18200  df-poset 18219  df-lub 18250  df-ipo 18434
This theorem is referenced by:  mreclatBAD  18469
  Copyright terms: Public domain W3C validator