| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. 2
⊢
(le‘𝐼) =
(le‘𝐼) |
| 2 | | mreclat.i |
. . . 4
⊢ 𝐼 = (toInc‘𝐶) |
| 3 | 2 | ipobas 18546 |
. . 3
⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 = (Base‘𝐼)) |
| 4 | 3 | adantr 480 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → 𝐶 = (Base‘𝐼)) |
| 5 | | mrelatlub.l |
. . 3
⊢ 𝐿 = (lub‘𝐼) |
| 6 | 5 | a1i 11 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → 𝐿 = (lub‘𝐼)) |
| 7 | 2 | ipopos 18551 |
. . 3
⊢ 𝐼 ∈ Poset |
| 8 | 7 | a1i 11 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → 𝐼 ∈ Poset) |
| 9 | | simpr 484 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → 𝑈 ⊆ 𝐶) |
| 10 | | uniss 4896 |
. . . . 5
⊢ (𝑈 ⊆ 𝐶 → ∪ 𝑈 ⊆ ∪ 𝐶) |
| 11 | 10 | adantl 481 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → ∪ 𝑈 ⊆ ∪ 𝐶) |
| 12 | | mreuni 17617 |
. . . . 5
⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 =
𝑋) |
| 13 | 12 | adantr 480 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → ∪ 𝐶 = 𝑋) |
| 14 | 11, 13 | sseqtrd 4000 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → ∪ 𝑈 ⊆ 𝑋) |
| 15 | | mrelatlub.f |
. . . 4
⊢ 𝐹 = (mrCls‘𝐶) |
| 16 | 15 | mrccl 17628 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑈
⊆ 𝑋) → (𝐹‘∪ 𝑈)
∈ 𝐶) |
| 17 | 14, 16 | syldan 591 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → (𝐹‘∪ 𝑈) ∈ 𝐶) |
| 18 | | elssuni 4918 |
. . . 4
⊢ (𝑥 ∈ 𝑈 → 𝑥 ⊆ ∪ 𝑈) |
| 19 | 15 | mrcssid 17634 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑈
⊆ 𝑋) → ∪ 𝑈
⊆ (𝐹‘∪ 𝑈)) |
| 20 | 14, 19 | syldan 591 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → ∪ 𝑈 ⊆ (𝐹‘∪ 𝑈)) |
| 21 | 18, 20 | sylan9ssr 3978 |
. . 3
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑥 ⊆ (𝐹‘∪ 𝑈)) |
| 22 | | simpll 766 |
. . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (Moore‘𝑋)) |
| 23 | 9 | sselda 3963 |
. . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐶) |
| 24 | 17 | adantr 480 |
. . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑥 ∈ 𝑈) → (𝐹‘∪ 𝑈) ∈ 𝐶) |
| 25 | 2, 1 | ipole 18549 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝐶 ∧ (𝐹‘∪ 𝑈) ∈ 𝐶) → (𝑥(le‘𝐼)(𝐹‘∪ 𝑈) ↔ 𝑥 ⊆ (𝐹‘∪ 𝑈))) |
| 26 | 22, 23, 24, 25 | syl3anc 1373 |
. . 3
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑥 ∈ 𝑈) → (𝑥(le‘𝐼)(𝐹‘∪ 𝑈) ↔ 𝑥 ⊆ (𝐹‘∪ 𝑈))) |
| 27 | 21, 26 | mpbird 257 |
. 2
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑥(le‘𝐼)(𝐹‘∪ 𝑈)) |
| 28 | | simp1l 1198 |
. . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → 𝐶 ∈ (Moore‘𝑋)) |
| 29 | | simplll 774 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (Moore‘𝑋)) |
| 30 | | simplr 768 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶) → 𝑈 ⊆ 𝐶) |
| 31 | 30 | sselda 3963 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐶) |
| 32 | | simplr 768 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑦 ∈ 𝐶) |
| 33 | 2, 1 | ipole 18549 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥(le‘𝐼)𝑦 ↔ 𝑥 ⊆ 𝑦)) |
| 34 | 29, 31, 32, 33 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → (𝑥(le‘𝐼)𝑦 ↔ 𝑥 ⊆ 𝑦)) |
| 35 | 34 | biimpd 229 |
. . . . . . 7
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → (𝑥(le‘𝐼)𝑦 → 𝑥 ⊆ 𝑦)) |
| 36 | 35 | ralimdva 3153 |
. . . . . 6
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶) → (∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦 → ∀𝑥 ∈ 𝑈 𝑥 ⊆ 𝑦)) |
| 37 | 36 | 3impia 1117 |
. . . . 5
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → ∀𝑥 ∈ 𝑈 𝑥 ⊆ 𝑦) |
| 38 | | unissb 4920 |
. . . . 5
⊢ (∪ 𝑈
⊆ 𝑦 ↔
∀𝑥 ∈ 𝑈 𝑥 ⊆ 𝑦) |
| 39 | 37, 38 | sylibr 234 |
. . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → ∪ 𝑈 ⊆ 𝑦) |
| 40 | | simp2 1137 |
. . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → 𝑦 ∈ 𝐶) |
| 41 | 15 | mrcsscl 17637 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑈
⊆ 𝑦 ∧ 𝑦 ∈ 𝐶) → (𝐹‘∪ 𝑈) ⊆ 𝑦) |
| 42 | 28, 39, 40, 41 | syl3anc 1373 |
. . 3
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → (𝐹‘∪ 𝑈) ⊆ 𝑦) |
| 43 | 17 | 3ad2ant1 1133 |
. . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → (𝐹‘∪ 𝑈) ∈ 𝐶) |
| 44 | 2, 1 | ipole 18549 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘∪ 𝑈) ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → ((𝐹‘∪ 𝑈)(le‘𝐼)𝑦 ↔ (𝐹‘∪ 𝑈) ⊆ 𝑦)) |
| 45 | 28, 43, 40, 44 | syl3anc 1373 |
. . 3
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → ((𝐹‘∪ 𝑈)(le‘𝐼)𝑦 ↔ (𝐹‘∪ 𝑈) ⊆ 𝑦)) |
| 46 | 42, 45 | mpbird 257 |
. 2
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → (𝐹‘∪ 𝑈)(le‘𝐼)𝑦) |
| 47 | 1, 4, 6, 8, 9, 17,
27, 46 | poslubdg 18429 |
1
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → (𝐿‘𝑈) = (𝐹‘∪ 𝑈)) |