Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. 2
⊢
(le‘𝐼) =
(le‘𝐼) |
2 | | mreclat.i |
. . . 4
⊢ 𝐼 = (toInc‘𝐶) |
3 | 2 | ipobas 18164 |
. . 3
⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 = (Base‘𝐼)) |
4 | 3 | adantr 480 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → 𝐶 = (Base‘𝐼)) |
5 | | mrelatlub.l |
. . 3
⊢ 𝐿 = (lub‘𝐼) |
6 | 5 | a1i 11 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → 𝐿 = (lub‘𝐼)) |
7 | 2 | ipopos 18169 |
. . 3
⊢ 𝐼 ∈ Poset |
8 | 7 | a1i 11 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → 𝐼 ∈ Poset) |
9 | | simpr 484 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → 𝑈 ⊆ 𝐶) |
10 | | uniss 4844 |
. . . . 5
⊢ (𝑈 ⊆ 𝐶 → ∪ 𝑈 ⊆ ∪ 𝐶) |
11 | 10 | adantl 481 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → ∪ 𝑈 ⊆ ∪ 𝐶) |
12 | | mreuni 17226 |
. . . . 5
⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 =
𝑋) |
13 | 12 | adantr 480 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → ∪ 𝐶 = 𝑋) |
14 | 11, 13 | sseqtrd 3957 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → ∪ 𝑈 ⊆ 𝑋) |
15 | | mrelatlub.f |
. . . 4
⊢ 𝐹 = (mrCls‘𝐶) |
16 | 15 | mrccl 17237 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑈
⊆ 𝑋) → (𝐹‘∪ 𝑈)
∈ 𝐶) |
17 | 14, 16 | syldan 590 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → (𝐹‘∪ 𝑈) ∈ 𝐶) |
18 | | elssuni 4868 |
. . . 4
⊢ (𝑥 ∈ 𝑈 → 𝑥 ⊆ ∪ 𝑈) |
19 | 15 | mrcssid 17243 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑈
⊆ 𝑋) → ∪ 𝑈
⊆ (𝐹‘∪ 𝑈)) |
20 | 14, 19 | syldan 590 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → ∪ 𝑈 ⊆ (𝐹‘∪ 𝑈)) |
21 | 18, 20 | sylan9ssr 3931 |
. . 3
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑥 ⊆ (𝐹‘∪ 𝑈)) |
22 | | simpll 763 |
. . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (Moore‘𝑋)) |
23 | 9 | sselda 3917 |
. . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐶) |
24 | 17 | adantr 480 |
. . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑥 ∈ 𝑈) → (𝐹‘∪ 𝑈) ∈ 𝐶) |
25 | 2, 1 | ipole 18167 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝐶 ∧ (𝐹‘∪ 𝑈) ∈ 𝐶) → (𝑥(le‘𝐼)(𝐹‘∪ 𝑈) ↔ 𝑥 ⊆ (𝐹‘∪ 𝑈))) |
26 | 22, 23, 24, 25 | syl3anc 1369 |
. . 3
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑥 ∈ 𝑈) → (𝑥(le‘𝐼)(𝐹‘∪ 𝑈) ↔ 𝑥 ⊆ (𝐹‘∪ 𝑈))) |
27 | 21, 26 | mpbird 256 |
. 2
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑥(le‘𝐼)(𝐹‘∪ 𝑈)) |
28 | | simp1l 1195 |
. . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → 𝐶 ∈ (Moore‘𝑋)) |
29 | | simplll 771 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (Moore‘𝑋)) |
30 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶) → 𝑈 ⊆ 𝐶) |
31 | 30 | sselda 3917 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐶) |
32 | | simplr 765 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑦 ∈ 𝐶) |
33 | 2, 1 | ipole 18167 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥(le‘𝐼)𝑦 ↔ 𝑥 ⊆ 𝑦)) |
34 | 29, 31, 32, 33 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → (𝑥(le‘𝐼)𝑦 ↔ 𝑥 ⊆ 𝑦)) |
35 | 34 | biimpd 228 |
. . . . . . 7
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → (𝑥(le‘𝐼)𝑦 → 𝑥 ⊆ 𝑦)) |
36 | 35 | ralimdva 3102 |
. . . . . 6
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶) → (∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦 → ∀𝑥 ∈ 𝑈 𝑥 ⊆ 𝑦)) |
37 | 36 | 3impia 1115 |
. . . . 5
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → ∀𝑥 ∈ 𝑈 𝑥 ⊆ 𝑦) |
38 | | unissb 4870 |
. . . . 5
⊢ (∪ 𝑈
⊆ 𝑦 ↔
∀𝑥 ∈ 𝑈 𝑥 ⊆ 𝑦) |
39 | 37, 38 | sylibr 233 |
. . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → ∪ 𝑈 ⊆ 𝑦) |
40 | | simp2 1135 |
. . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → 𝑦 ∈ 𝐶) |
41 | 15 | mrcsscl 17246 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑈
⊆ 𝑦 ∧ 𝑦 ∈ 𝐶) → (𝐹‘∪ 𝑈) ⊆ 𝑦) |
42 | 28, 39, 40, 41 | syl3anc 1369 |
. . 3
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → (𝐹‘∪ 𝑈) ⊆ 𝑦) |
43 | 17 | 3ad2ant1 1131 |
. . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → (𝐹‘∪ 𝑈) ∈ 𝐶) |
44 | 2, 1 | ipole 18167 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘∪ 𝑈) ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → ((𝐹‘∪ 𝑈)(le‘𝐼)𝑦 ↔ (𝐹‘∪ 𝑈) ⊆ 𝑦)) |
45 | 28, 43, 40, 44 | syl3anc 1369 |
. . 3
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → ((𝐹‘∪ 𝑈)(le‘𝐼)𝑦 ↔ (𝐹‘∪ 𝑈) ⊆ 𝑦)) |
46 | 42, 45 | mpbird 256 |
. 2
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑥(le‘𝐼)𝑦) → (𝐹‘∪ 𝑈)(le‘𝐼)𝑦) |
47 | 1, 4, 6, 8, 9, 17,
27, 46 | poslubdg 18047 |
1
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → (𝐿‘𝑈) = (𝐹‘∪ 𝑈)) |