MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrelatlub Structured version   Visualization version   GIF version

Theorem mrelatlub 18607
Description: Least upper bounds in a Moore space are realized by the closure of the union. (Contributed by Stefan O'Rear, 31-Jan-2015.) See mrelatlubALT 48884 for an alternate proof.
Hypotheses
Ref Expression
mreclat.i 𝐼 = (toInc‘𝐶)
mrelatlub.f 𝐹 = (mrCls‘𝐶)
mrelatlub.l 𝐿 = (lub‘𝐼)
Assertion
Ref Expression
mrelatlub ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → (𝐿𝑈) = (𝐹 𝑈))

Proof of Theorem mrelatlub
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . 2 (le‘𝐼) = (le‘𝐼)
2 mreclat.i . . . 4 𝐼 = (toInc‘𝐶)
32ipobas 18576 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = (Base‘𝐼))
43adantr 480 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → 𝐶 = (Base‘𝐼))
5 mrelatlub.l . . 3 𝐿 = (lub‘𝐼)
65a1i 11 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → 𝐿 = (lub‘𝐼))
72ipopos 18581 . . 3 𝐼 ∈ Poset
87a1i 11 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → 𝐼 ∈ Poset)
9 simpr 484 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → 𝑈𝐶)
10 uniss 4915 . . . . 5 (𝑈𝐶 𝑈 𝐶)
1110adantl 481 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → 𝑈 𝐶)
12 mreuni 17643 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = 𝑋)
1312adantr 480 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → 𝐶 = 𝑋)
1411, 13sseqtrd 4020 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → 𝑈𝑋)
15 mrelatlub.f . . . 4 𝐹 = (mrCls‘𝐶)
1615mrccl 17654 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹 𝑈) ∈ 𝐶)
1714, 16syldan 591 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → (𝐹 𝑈) ∈ 𝐶)
18 elssuni 4937 . . . 4 (𝑥𝑈𝑥 𝑈)
1915mrcssid 17660 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈 ⊆ (𝐹 𝑈))
2014, 19syldan 591 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → 𝑈 ⊆ (𝐹 𝑈))
2118, 20sylan9ssr 3998 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑥𝑈) → 𝑥 ⊆ (𝐹 𝑈))
22 simpll 767 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑥𝑈) → 𝐶 ∈ (Moore‘𝑋))
239sselda 3983 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑥𝑈) → 𝑥𝐶)
2417adantr 480 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑥𝑈) → (𝐹 𝑈) ∈ 𝐶)
252, 1ipole 18579 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶 ∧ (𝐹 𝑈) ∈ 𝐶) → (𝑥(le‘𝐼)(𝐹 𝑈) ↔ 𝑥 ⊆ (𝐹 𝑈)))
2622, 23, 24, 25syl3anc 1373 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑥𝑈) → (𝑥(le‘𝐼)(𝐹 𝑈) ↔ 𝑥 ⊆ (𝐹 𝑈)))
2721, 26mpbird 257 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑥𝑈) → 𝑥(le‘𝐼)(𝐹 𝑈))
28 simp1l 1198 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑥(le‘𝐼)𝑦) → 𝐶 ∈ (Moore‘𝑋))
29 simplll 775 . . . . . . . . 9 ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶) ∧ 𝑥𝑈) → 𝐶 ∈ (Moore‘𝑋))
30 simplr 769 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶) → 𝑈𝐶)
3130sselda 3983 . . . . . . . . 9 ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶) ∧ 𝑥𝑈) → 𝑥𝐶)
32 simplr 769 . . . . . . . . 9 ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶) ∧ 𝑥𝑈) → 𝑦𝐶)
332, 1ipole 18579 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶𝑦𝐶) → (𝑥(le‘𝐼)𝑦𝑥𝑦))
3429, 31, 32, 33syl3anc 1373 . . . . . . . 8 ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶) ∧ 𝑥𝑈) → (𝑥(le‘𝐼)𝑦𝑥𝑦))
3534biimpd 229 . . . . . . 7 ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶) ∧ 𝑥𝑈) → (𝑥(le‘𝐼)𝑦𝑥𝑦))
3635ralimdva 3167 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶) → (∀𝑥𝑈 𝑥(le‘𝐼)𝑦 → ∀𝑥𝑈 𝑥𝑦))
37363impia 1118 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑥(le‘𝐼)𝑦) → ∀𝑥𝑈 𝑥𝑦)
38 unissb 4939 . . . . 5 ( 𝑈𝑦 ↔ ∀𝑥𝑈 𝑥𝑦)
3937, 38sylibr 234 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑥(le‘𝐼)𝑦) → 𝑈𝑦)
40 simp2 1138 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑥(le‘𝐼)𝑦) → 𝑦𝐶)
4115mrcsscl 17663 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑦𝑦𝐶) → (𝐹 𝑈) ⊆ 𝑦)
4228, 39, 40, 41syl3anc 1373 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑥(le‘𝐼)𝑦) → (𝐹 𝑈) ⊆ 𝑦)
43173ad2ant1 1134 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑥(le‘𝐼)𝑦) → (𝐹 𝑈) ∈ 𝐶)
442, 1ipole 18579 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹 𝑈) ∈ 𝐶𝑦𝐶) → ((𝐹 𝑈)(le‘𝐼)𝑦 ↔ (𝐹 𝑈) ⊆ 𝑦))
4528, 43, 40, 44syl3anc 1373 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑥(le‘𝐼)𝑦) → ((𝐹 𝑈)(le‘𝐼)𝑦 ↔ (𝐹 𝑈) ⊆ 𝑦))
4642, 45mpbird 257 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑥(le‘𝐼)𝑦) → (𝐹 𝑈)(le‘𝐼)𝑦)
471, 4, 6, 8, 9, 17, 27, 46poslubdg 18459 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → (𝐿𝑈) = (𝐹 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wss 3951   cuni 4907   class class class wbr 5143  cfv 6561  Basecbs 17247  lecple 17304  Moorecmre 17625  mrClscmrc 17626  Posetcpo 18353  lubclub 18355  toInccipo 18572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-tset 17316  df-ple 17317  df-ocomp 17318  df-mre 17629  df-mrc 17630  df-proset 18340  df-poset 18359  df-lub 18391  df-ipo 18573
This theorem is referenced by:  mreclatBAD  18608
  Copyright terms: Public domain W3C validator