![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setrecsres | Structured version Visualization version GIF version |
Description: A recursively generated class is unaffected when its input function is restricted to subsets of the class. (Contributed by Emmett Weisz, 14-Mar-2022.) |
Ref | Expression |
---|---|
setrecsres.1 | ⊢ 𝐵 = setrecs(𝐹) |
setrecsres.2 | ⊢ (𝜑 → Fun 𝐹) |
Ref | Expression |
---|---|
setrecsres | ⊢ (𝜑 → 𝐵 = setrecs((𝐹 ↾ 𝒫 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setrecsres.1 | . . 3 ⊢ 𝐵 = setrecs(𝐹) | |
2 | id 22 | . . . . . . . 8 ⊢ (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) | |
3 | setrecsres.2 | . . . . . . . . . 10 ⊢ (𝜑 → Fun 𝐹) | |
4 | resss 6004 | . . . . . . . . . . 11 ⊢ (𝐹 ↾ 𝒫 𝐵) ⊆ 𝐹 | |
5 | 4 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 ↾ 𝒫 𝐵) ⊆ 𝐹) |
6 | 3, 5 | setrecsss 47699 | . . . . . . . . 9 ⊢ (𝜑 → setrecs((𝐹 ↾ 𝒫 𝐵)) ⊆ setrecs(𝐹)) |
7 | 6, 1 | sseqtrrdi 4032 | . . . . . . . 8 ⊢ (𝜑 → setrecs((𝐹 ↾ 𝒫 𝐵)) ⊆ 𝐵) |
8 | 2, 7 | sylan9ssr 3995 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → 𝑥 ⊆ 𝐵) |
9 | velpw 4606 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
10 | fvres 6907 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐵 → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹‘𝑥)) | |
11 | 9, 10 | sylbir 234 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐵 → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹‘𝑥)) |
12 | 8, 11 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹‘𝑥)) |
13 | eqid 2732 | . . . . . . . 8 ⊢ setrecs((𝐹 ↾ 𝒫 𝐵)) = setrecs((𝐹 ↾ 𝒫 𝐵)) | |
14 | vex 3478 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
15 | 14 | a1i 11 | . . . . . . . 8 ⊢ (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → 𝑥 ∈ V) |
16 | 13, 15, 2 | setrec1 47689 | . . . . . . 7 ⊢ (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) |
17 | 16 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) |
18 | 12, 17 | eqsstrrd 4020 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → (𝐹‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) |
19 | 18 | ex 413 | . . . 4 ⊢ (𝜑 → (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → (𝐹‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))) |
20 | 19 | alrimiv 1930 | . . 3 ⊢ (𝜑 → ∀𝑥(𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → (𝐹‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))) |
21 | 1, 20 | setrec2v 47694 | . 2 ⊢ (𝜑 → 𝐵 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) |
22 | 21, 7 | eqssd 3998 | 1 ⊢ (𝜑 → 𝐵 = setrecs((𝐹 ↾ 𝒫 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3947 𝒫 cpw 4601 ↾ cres 5677 Fun wfun 6534 ‘cfv 6540 setrecscsetrecs 47681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-reg 9583 ax-inf2 9632 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-r1 9755 df-rank 9756 df-setrecs 47682 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |