Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrecsres Structured version   Visualization version   GIF version

Theorem setrecsres 49688
Description: A recursively generated class is unaffected when its input function is restricted to subsets of the class. (Contributed by Emmett Weisz, 14-Mar-2022.)
Hypotheses
Ref Expression
setrecsres.1 𝐵 = setrecs(𝐹)
setrecsres.2 (𝜑 → Fun 𝐹)
Assertion
Ref Expression
setrecsres (𝜑𝐵 = setrecs((𝐹 ↾ 𝒫 𝐵)))

Proof of Theorem setrecsres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 setrecsres.1 . . 3 𝐵 = setrecs(𝐹)
2 id 22 . . . . . . . 8 (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
3 setrecsres.2 . . . . . . . . . 10 (𝜑 → Fun 𝐹)
4 resss 5972 . . . . . . . . . . 11 (𝐹 ↾ 𝒫 𝐵) ⊆ 𝐹
54a1i 11 . . . . . . . . . 10 (𝜑 → (𝐹 ↾ 𝒫 𝐵) ⊆ 𝐹)
63, 5setrecsss 49687 . . . . . . . . 9 (𝜑 → setrecs((𝐹 ↾ 𝒫 𝐵)) ⊆ setrecs(𝐹))
76, 1sseqtrrdi 3988 . . . . . . . 8 (𝜑 → setrecs((𝐹 ↾ 𝒫 𝐵)) ⊆ 𝐵)
82, 7sylan9ssr 3961 . . . . . . 7 ((𝜑𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → 𝑥𝐵)
9 velpw 4568 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
10 fvres 6877 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐵 → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹𝑥))
119, 10sylbir 235 . . . . . . 7 (𝑥𝐵 → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹𝑥))
128, 11syl 17 . . . . . 6 ((𝜑𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹𝑥))
13 eqid 2729 . . . . . . . 8 setrecs((𝐹 ↾ 𝒫 𝐵)) = setrecs((𝐹 ↾ 𝒫 𝐵))
14 vex 3451 . . . . . . . . 9 𝑥 ∈ V
1514a1i 11 . . . . . . . 8 (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → 𝑥 ∈ V)
1613, 15, 2setrec1 49677 . . . . . . 7 (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
1716adantl 481 . . . . . 6 ((𝜑𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
1812, 17eqsstrrd 3982 . . . . 5 ((𝜑𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → (𝐹𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
1918ex 412 . . . 4 (𝜑 → (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → (𝐹𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))))
2019alrimiv 1927 . . 3 (𝜑 → ∀𝑥(𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → (𝐹𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))))
211, 20setrec2v 49682 . 2 (𝜑𝐵 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
2221, 7eqssd 3964 1 (𝜑𝐵 = setrecs((𝐹 ↾ 𝒫 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  𝒫 cpw 4563  cres 5640  Fun wfun 6505  cfv 6511  setrecscsetrecs 49669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-r1 9717  df-rank 9718  df-setrecs 49670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator