Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > setrecsres | Structured version Visualization version GIF version |
Description: A recursively generated class is unaffected when its input function is restricted to subsets of the class. (Contributed by Emmett Weisz, 14-Mar-2022.) |
Ref | Expression |
---|---|
setrecsres.1 | ⊢ 𝐵 = setrecs(𝐹) |
setrecsres.2 | ⊢ (𝜑 → Fun 𝐹) |
Ref | Expression |
---|---|
setrecsres | ⊢ (𝜑 → 𝐵 = setrecs((𝐹 ↾ 𝒫 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setrecsres.1 | . . 3 ⊢ 𝐵 = setrecs(𝐹) | |
2 | id 22 | . . . . . . . 8 ⊢ (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) | |
3 | setrecsres.2 | . . . . . . . . . 10 ⊢ (𝜑 → Fun 𝐹) | |
4 | resss 5905 | . . . . . . . . . . 11 ⊢ (𝐹 ↾ 𝒫 𝐵) ⊆ 𝐹 | |
5 | 4 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 ↾ 𝒫 𝐵) ⊆ 𝐹) |
6 | 3, 5 | setrecsss 46292 | . . . . . . . . 9 ⊢ (𝜑 → setrecs((𝐹 ↾ 𝒫 𝐵)) ⊆ setrecs(𝐹)) |
7 | 6, 1 | sseqtrrdi 3968 | . . . . . . . 8 ⊢ (𝜑 → setrecs((𝐹 ↾ 𝒫 𝐵)) ⊆ 𝐵) |
8 | 2, 7 | sylan9ssr 3931 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → 𝑥 ⊆ 𝐵) |
9 | velpw 4535 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
10 | fvres 6775 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐵 → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹‘𝑥)) | |
11 | 9, 10 | sylbir 234 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐵 → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹‘𝑥)) |
12 | 8, 11 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹‘𝑥)) |
13 | eqid 2738 | . . . . . . . 8 ⊢ setrecs((𝐹 ↾ 𝒫 𝐵)) = setrecs((𝐹 ↾ 𝒫 𝐵)) | |
14 | vex 3426 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
15 | 14 | a1i 11 | . . . . . . . 8 ⊢ (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → 𝑥 ∈ V) |
16 | 13, 15, 2 | setrec1 46283 | . . . . . . 7 ⊢ (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) |
17 | 16 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) |
18 | 12, 17 | eqsstrrd 3956 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → (𝐹‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) |
19 | 18 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → (𝐹‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))) |
20 | 19 | alrimiv 1931 | . . 3 ⊢ (𝜑 → ∀𝑥(𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → (𝐹‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))) |
21 | 1, 20 | setrec2v 46288 | . 2 ⊢ (𝜑 → 𝐵 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) |
22 | 21, 7 | eqssd 3934 | 1 ⊢ (𝜑 → 𝐵 = setrecs((𝐹 ↾ 𝒫 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 ↾ cres 5582 Fun wfun 6412 ‘cfv 6418 setrecscsetrecs 46275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-reg 9281 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-r1 9453 df-rank 9454 df-setrecs 46276 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |