Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrecsres Structured version   Visualization version   GIF version

Theorem setrecsres 49276
Description: A recursively generated class is unaffected when its input function is restricted to subsets of the class. (Contributed by Emmett Weisz, 14-Mar-2022.)
Hypotheses
Ref Expression
setrecsres.1 𝐵 = setrecs(𝐹)
setrecsres.2 (𝜑 → Fun 𝐹)
Assertion
Ref Expression
setrecsres (𝜑𝐵 = setrecs((𝐹 ↾ 𝒫 𝐵)))

Proof of Theorem setrecsres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 setrecsres.1 . . 3 𝐵 = setrecs(𝐹)
2 id 22 . . . . . . . 8 (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
3 setrecsres.2 . . . . . . . . . 10 (𝜑 → Fun 𝐹)
4 resss 6018 . . . . . . . . . . 11 (𝐹 ↾ 𝒫 𝐵) ⊆ 𝐹
54a1i 11 . . . . . . . . . 10 (𝜑 → (𝐹 ↾ 𝒫 𝐵) ⊆ 𝐹)
63, 5setrecsss 49275 . . . . . . . . 9 (𝜑 → setrecs((𝐹 ↾ 𝒫 𝐵)) ⊆ setrecs(𝐹))
76, 1sseqtrrdi 4024 . . . . . . . 8 (𝜑 → setrecs((𝐹 ↾ 𝒫 𝐵)) ⊆ 𝐵)
82, 7sylan9ssr 3997 . . . . . . 7 ((𝜑𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → 𝑥𝐵)
9 velpw 4604 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
10 fvres 6924 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐵 → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹𝑥))
119, 10sylbir 235 . . . . . . 7 (𝑥𝐵 → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹𝑥))
128, 11syl 17 . . . . . 6 ((𝜑𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹𝑥))
13 eqid 2736 . . . . . . . 8 setrecs((𝐹 ↾ 𝒫 𝐵)) = setrecs((𝐹 ↾ 𝒫 𝐵))
14 vex 3483 . . . . . . . . 9 𝑥 ∈ V
1514a1i 11 . . . . . . . 8 (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → 𝑥 ∈ V)
1613, 15, 2setrec1 49265 . . . . . . 7 (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
1716adantl 481 . . . . . 6 ((𝜑𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
1812, 17eqsstrrd 4018 . . . . 5 ((𝜑𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → (𝐹𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
1918ex 412 . . . 4 (𝜑 → (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → (𝐹𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))))
2019alrimiv 1926 . . 3 (𝜑 → ∀𝑥(𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → (𝐹𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))))
211, 20setrec2v 49270 . 2 (𝜑𝐵 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
2221, 7eqssd 4000 1 (𝜑𝐵 = setrecs((𝐹 ↾ 𝒫 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  wss 3950  𝒫 cpw 4599  cres 5686  Fun wfun 6554  cfv 6560  setrecscsetrecs 49257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-reg 9633  ax-inf2 9682
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-r1 9805  df-rank 9806  df-setrecs 49258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator