Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrecsres Structured version   Visualization version   GIF version

Theorem setrecsres 49691
Description: A recursively generated class is unaffected when its input function is restricted to subsets of the class. (Contributed by Emmett Weisz, 14-Mar-2022.)
Hypotheses
Ref Expression
setrecsres.1 𝐵 = setrecs(𝐹)
setrecsres.2 (𝜑 → Fun 𝐹)
Assertion
Ref Expression
setrecsres (𝜑𝐵 = setrecs((𝐹 ↾ 𝒫 𝐵)))

Proof of Theorem setrecsres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 setrecsres.1 . . 3 𝐵 = setrecs(𝐹)
2 id 22 . . . . . . . 8 (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
3 setrecsres.2 . . . . . . . . . 10 (𝜑 → Fun 𝐹)
4 resss 5952 . . . . . . . . . . 11 (𝐹 ↾ 𝒫 𝐵) ⊆ 𝐹
54a1i 11 . . . . . . . . . 10 (𝜑 → (𝐹 ↾ 𝒫 𝐵) ⊆ 𝐹)
63, 5setrecsss 49690 . . . . . . . . 9 (𝜑 → setrecs((𝐹 ↾ 𝒫 𝐵)) ⊆ setrecs(𝐹))
76, 1sseqtrrdi 3977 . . . . . . . 8 (𝜑 → setrecs((𝐹 ↾ 𝒫 𝐵)) ⊆ 𝐵)
82, 7sylan9ssr 3950 . . . . . . 7 ((𝜑𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → 𝑥𝐵)
9 velpw 4556 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
10 fvres 6841 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐵 → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹𝑥))
119, 10sylbir 235 . . . . . . 7 (𝑥𝐵 → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹𝑥))
128, 11syl 17 . . . . . 6 ((𝜑𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹𝑥))
13 eqid 2729 . . . . . . . 8 setrecs((𝐹 ↾ 𝒫 𝐵)) = setrecs((𝐹 ↾ 𝒫 𝐵))
14 vex 3440 . . . . . . . . 9 𝑥 ∈ V
1514a1i 11 . . . . . . . 8 (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → 𝑥 ∈ V)
1613, 15, 2setrec1 49680 . . . . . . 7 (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
1716adantl 481 . . . . . 6 ((𝜑𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
1812, 17eqsstrrd 3971 . . . . 5 ((𝜑𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → (𝐹𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
1918ex 412 . . . 4 (𝜑 → (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → (𝐹𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))))
2019alrimiv 1927 . . 3 (𝜑 → ∀𝑥(𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → (𝐹𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))))
211, 20setrec2v 49685 . 2 (𝜑𝐵 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
2221, 7eqssd 3953 1 (𝜑𝐵 = setrecs((𝐹 ↾ 𝒫 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  wss 3903  𝒫 cpw 4551  cres 5621  Fun wfun 6476  cfv 6482  setrecscsetrecs 49672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-r1 9660  df-rank 9661  df-setrecs 49673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator