Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrecsres Structured version   Visualization version   GIF version

Theorem setrecsres 47233
Description: A recursively generated class is unaffected when its input function is restricted to subsets of the class. (Contributed by Emmett Weisz, 14-Mar-2022.)
Hypotheses
Ref Expression
setrecsres.1 𝐵 = setrecs(𝐹)
setrecsres.2 (𝜑 → Fun 𝐹)
Assertion
Ref Expression
setrecsres (𝜑𝐵 = setrecs((𝐹 ↾ 𝒫 𝐵)))

Proof of Theorem setrecsres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 setrecsres.1 . . 3 𝐵 = setrecs(𝐹)
2 id 22 . . . . . . . 8 (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
3 setrecsres.2 . . . . . . . . . 10 (𝜑 → Fun 𝐹)
4 resss 5963 . . . . . . . . . . 11 (𝐹 ↾ 𝒫 𝐵) ⊆ 𝐹
54a1i 11 . . . . . . . . . 10 (𝜑 → (𝐹 ↾ 𝒫 𝐵) ⊆ 𝐹)
63, 5setrecsss 47232 . . . . . . . . 9 (𝜑 → setrecs((𝐹 ↾ 𝒫 𝐵)) ⊆ setrecs(𝐹))
76, 1sseqtrrdi 3996 . . . . . . . 8 (𝜑 → setrecs((𝐹 ↾ 𝒫 𝐵)) ⊆ 𝐵)
82, 7sylan9ssr 3959 . . . . . . 7 ((𝜑𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → 𝑥𝐵)
9 velpw 4566 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
10 fvres 6862 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐵 → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹𝑥))
119, 10sylbir 234 . . . . . . 7 (𝑥𝐵 → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹𝑥))
128, 11syl 17 . . . . . 6 ((𝜑𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹𝑥))
13 eqid 2733 . . . . . . . 8 setrecs((𝐹 ↾ 𝒫 𝐵)) = setrecs((𝐹 ↾ 𝒫 𝐵))
14 vex 3448 . . . . . . . . 9 𝑥 ∈ V
1514a1i 11 . . . . . . . 8 (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → 𝑥 ∈ V)
1613, 15, 2setrec1 47222 . . . . . . 7 (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
1716adantl 483 . . . . . 6 ((𝜑𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
1812, 17eqsstrrd 3984 . . . . 5 ((𝜑𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → (𝐹𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
1918ex 414 . . . 4 (𝜑 → (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → (𝐹𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))))
2019alrimiv 1931 . . 3 (𝜑 → ∀𝑥(𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → (𝐹𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))))
211, 20setrec2v 47227 . 2 (𝜑𝐵 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
2221, 7eqssd 3962 1 (𝜑𝐵 = setrecs((𝐹 ↾ 𝒫 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3444  wss 3911  𝒫 cpw 4561  cres 5636  Fun wfun 6491  cfv 6497  setrecscsetrecs 47214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-reg 9533  ax-inf2 9582
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-ov 7361  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-r1 9705  df-rank 9706  df-setrecs 47215
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator