![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setrecsres | Structured version Visualization version GIF version |
Description: A recursively generated class is unaffected when its input function is restricted to subsets of the class. (Contributed by Emmett Weisz, 14-Mar-2022.) |
Ref | Expression |
---|---|
setrecsres.1 | ⊢ 𝐵 = setrecs(𝐹) |
setrecsres.2 | ⊢ (𝜑 → Fun 𝐹) |
Ref | Expression |
---|---|
setrecsres | ⊢ (𝜑 → 𝐵 = setrecs((𝐹 ↾ 𝒫 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setrecsres.1 | . . 3 ⊢ 𝐵 = setrecs(𝐹) | |
2 | id 22 | . . . . . . . 8 ⊢ (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) | |
3 | setrecsres.2 | . . . . . . . . . 10 ⊢ (𝜑 → Fun 𝐹) | |
4 | resss 6031 | . . . . . . . . . . 11 ⊢ (𝐹 ↾ 𝒫 𝐵) ⊆ 𝐹 | |
5 | 4 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 ↾ 𝒫 𝐵) ⊆ 𝐹) |
6 | 3, 5 | setrecsss 48793 | . . . . . . . . 9 ⊢ (𝜑 → setrecs((𝐹 ↾ 𝒫 𝐵)) ⊆ setrecs(𝐹)) |
7 | 6, 1 | sseqtrrdi 4060 | . . . . . . . 8 ⊢ (𝜑 → setrecs((𝐹 ↾ 𝒫 𝐵)) ⊆ 𝐵) |
8 | 2, 7 | sylan9ssr 4023 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → 𝑥 ⊆ 𝐵) |
9 | velpw 4627 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
10 | fvres 6939 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐵 → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹‘𝑥)) | |
11 | 9, 10 | sylbir 235 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐵 → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹‘𝑥)) |
12 | 8, 11 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹‘𝑥)) |
13 | eqid 2740 | . . . . . . . 8 ⊢ setrecs((𝐹 ↾ 𝒫 𝐵)) = setrecs((𝐹 ↾ 𝒫 𝐵)) | |
14 | vex 3492 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
15 | 14 | a1i 11 | . . . . . . . 8 ⊢ (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → 𝑥 ∈ V) |
16 | 13, 15, 2 | setrec1 48783 | . . . . . . 7 ⊢ (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) |
17 | 16 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) |
18 | 12, 17 | eqsstrrd 4048 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → (𝐹‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) |
19 | 18 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → (𝐹‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))) |
20 | 19 | alrimiv 1926 | . . 3 ⊢ (𝜑 → ∀𝑥(𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → (𝐹‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))) |
21 | 1, 20 | setrec2v 48788 | . 2 ⊢ (𝜑 → 𝐵 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) |
22 | 21, 7 | eqssd 4026 | 1 ⊢ (𝜑 → 𝐵 = setrecs((𝐹 ↾ 𝒫 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 ↾ cres 5702 Fun wfun 6567 ‘cfv 6573 setrecscsetrecs 48775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-reg 9661 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-r1 9833 df-rank 9834 df-setrecs 48776 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |