Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > setrecsres | Structured version Visualization version GIF version |
Description: A recursively generated class is unaffected when its input function is restricted to subsets of the class. (Contributed by Emmett Weisz, 14-Mar-2022.) |
Ref | Expression |
---|---|
setrecsres.1 | ⊢ 𝐵 = setrecs(𝐹) |
setrecsres.2 | ⊢ (𝜑 → Fun 𝐹) |
Ref | Expression |
---|---|
setrecsres | ⊢ (𝜑 → 𝐵 = setrecs((𝐹 ↾ 𝒫 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setrecsres.1 | . . 3 ⊢ 𝐵 = setrecs(𝐹) | |
2 | id 22 | . . . . . . . 8 ⊢ (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) | |
3 | setrecsres.2 | . . . . . . . . . 10 ⊢ (𝜑 → Fun 𝐹) | |
4 | resss 5853 | . . . . . . . . . . 11 ⊢ (𝐹 ↾ 𝒫 𝐵) ⊆ 𝐹 | |
5 | 4 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 ↾ 𝒫 𝐵) ⊆ 𝐹) |
6 | 3, 5 | setrecsss 45715 | . . . . . . . . 9 ⊢ (𝜑 → setrecs((𝐹 ↾ 𝒫 𝐵)) ⊆ setrecs(𝐹)) |
7 | 6, 1 | sseqtrrdi 3945 | . . . . . . . 8 ⊢ (𝜑 → setrecs((𝐹 ↾ 𝒫 𝐵)) ⊆ 𝐵) |
8 | 2, 7 | sylan9ssr 3908 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → 𝑥 ⊆ 𝐵) |
9 | velpw 4502 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
10 | fvres 6682 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐵 → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹‘𝑥)) | |
11 | 9, 10 | sylbir 238 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐵 → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹‘𝑥)) |
12 | 8, 11 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹‘𝑥)) |
13 | eqid 2758 | . . . . . . . 8 ⊢ setrecs((𝐹 ↾ 𝒫 𝐵)) = setrecs((𝐹 ↾ 𝒫 𝐵)) | |
14 | vex 3413 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
15 | 14 | a1i 11 | . . . . . . . 8 ⊢ (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → 𝑥 ∈ V) |
16 | 13, 15, 2 | setrec1 45706 | . . . . . . 7 ⊢ (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) |
17 | 16 | adantl 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) |
18 | 12, 17 | eqsstrrd 3933 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → (𝐹‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) |
19 | 18 | ex 416 | . . . 4 ⊢ (𝜑 → (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → (𝐹‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))) |
20 | 19 | alrimiv 1928 | . . 3 ⊢ (𝜑 → ∀𝑥(𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → (𝐹‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))) |
21 | 1, 20 | setrec2v 45711 | . 2 ⊢ (𝜑 → 𝐵 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) |
22 | 21, 7 | eqssd 3911 | 1 ⊢ (𝜑 → 𝐵 = setrecs((𝐹 ↾ 𝒫 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ⊆ wss 3860 𝒫 cpw 4497 ↾ cres 5530 Fun wfun 6334 ‘cfv 6340 setrecscsetrecs 45698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-reg 9102 ax-inf2 9150 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-om 7586 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-r1 9239 df-rank 9240 df-setrecs 45699 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |