MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syld3an1 Structured version   Visualization version   GIF version

Theorem syld3an1 1408
Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.) (Proof shortened by Wolf Lammen, 26-Jun-2022.)
Hypotheses
Ref Expression
syld3an1.1 ((𝜒𝜓𝜃) → 𝜑)
syld3an1.2 ((𝜑𝜓𝜃) → 𝜏)
Assertion
Ref Expression
syld3an1 ((𝜒𝜓𝜃) → 𝜏)

Proof of Theorem syld3an1
StepHypRef Expression
1 syld3an1.1 . 2 ((𝜒𝜓𝜃) → 𝜑)
2 simp2 1135 . 2 ((𝜒𝜓𝜃) → 𝜓)
3 simp3 1136 . 2 ((𝜒𝜓𝜃) → 𝜃)
4 syld3an1.2 . 2 ((𝜑𝜓𝜃) → 𝜏)
51, 2, 3, 4syl3anc 1369 1 ((𝜒𝜓𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1087
This theorem is referenced by:  f1dom2g  8967  f1domfi2  9187  entrfi  9195  entrfir  9196  domtrfil  9197  domtrfi  9198  domtrfir  9199  php3  9214  findcard3  9287  npncan  11485  nnpcan  11487  ppncan  11506  muldivdir  11911  subdivcomb1  11913  div2neg  11941  ltmuldiv  12091  opfi1uzind  14466  sgrp2nmndlem4  18845  zndvds  21324  wsuceq123  35090  atlrelat1  38494  cvlatcvr1  38514  dih11  40439  wessf1ornlem  44182  mullimc  44630  mullimcf  44637  icccncfext  44901  stoweidlem34  45048  stoweidlem49  45063  stoweidlem57  45071  sigarexp  45873  f1ocof1ob  46087  el0ldepsnzr  47235
  Copyright terms: Public domain W3C validator