| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syld3an1 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
| Ref | Expression |
|---|---|
| syld3an1.1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) |
| syld3an1.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syld3an1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syld3an1.1 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) | |
| 2 | simp2 1137 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜓) | |
| 3 | simp3 1138 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜃) | |
| 4 | syld3an1.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1dom2g 8982 f1domfi2 9194 entrfi 9202 entrfir 9203 domtrfil 9204 domtrfi 9205 domtrfir 9206 php3 9221 findcard3 9288 npncan 11502 nnpcan 11504 ppncan 11523 muldivdir 11932 subdivcomb1 11934 div2neg 11962 ltmuldiv 12113 opfi1uzind 14527 sgrp2nmndlem4 18904 zndvds 21508 wsuceq123 35778 atlrelat1 39285 cvlatcvr1 39305 dih11 41230 wessf1ornlem 45157 mullimc 45593 mullimcf 45600 icccncfext 45864 stoweidlem34 46011 stoweidlem49 46026 stoweidlem57 46034 sigarexp 46836 f1ocof1ob 47058 el0ldepsnzr 48391 |
| Copyright terms: Public domain | W3C validator |