MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syld3an1 Structured version   Visualization version   GIF version

Theorem syld3an1 1535
Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.) (Proof shortened by Wolf Lammen, 26-Jun-2022.)
Hypotheses
Ref Expression
syld3an1.1 ((𝜒𝜓𝜃) → 𝜑)
syld3an1.2 ((𝜑𝜓𝜃) → 𝜏)
Assertion
Ref Expression
syld3an1 ((𝜒𝜓𝜃) → 𝜏)

Proof of Theorem syld3an1
StepHypRef Expression
1 syld3an1.1 . 2 ((𝜒𝜓𝜃) → 𝜑)
2 simp2 1173 . 2 ((𝜒𝜓𝜃) → 𝜓)
3 simp3 1174 . 2 ((𝜒𝜓𝜃) → 𝜃)
4 syld3an1.2 . 2 ((𝜑𝜓𝜃) → 𝜏)
51, 2, 3, 4syl3anc 1496 1 ((𝜒𝜓𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387  df-3an 1115
This theorem is referenced by:  npncan  10623  nnpcan  10625  ppncan  10644  muldivdir  11045  div2neg  11074  ltmuldiv  11226  opfi1uzind  13572  sgrp2nmndlem4  17769  zndvds  20257  subdivcomb1  32155  wsuceq123  32298  atlrelat1  35396  cvlatcvr1  35416  dih11  37340  mullimc  40643  mullimcf  40650  icccncfext  40895  stoweidlem34  41045  stoweidlem49  41060  stoweidlem57  41068  sigarexp  41842  el0ldepsnzr  43103
  Copyright terms: Public domain W3C validator