MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syld3an1 Structured version   Visualization version   GIF version

Theorem syld3an1 1408
Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.) (Proof shortened by Wolf Lammen, 26-Jun-2022.)
Hypotheses
Ref Expression
syld3an1.1 ((𝜒𝜓𝜃) → 𝜑)
syld3an1.2 ((𝜑𝜓𝜃) → 𝜏)
Assertion
Ref Expression
syld3an1 ((𝜒𝜓𝜃) → 𝜏)

Proof of Theorem syld3an1
StepHypRef Expression
1 syld3an1.1 . 2 ((𝜒𝜓𝜃) → 𝜑)
2 simp2 1135 . 2 ((𝜒𝜓𝜃) → 𝜓)
3 simp3 1136 . 2 ((𝜒𝜓𝜃) → 𝜃)
4 syld3an1.2 . 2 ((𝜑𝜓𝜃) → 𝜏)
51, 2, 3, 4syl3anc 1369 1 ((𝜒𝜓𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  f1dom2g  8712  entrfi  8936  entrfir  8937  npncan  11172  nnpcan  11174  ppncan  11193  muldivdir  11598  subdivcomb1  11600  div2neg  11628  ltmuldiv  11778  opfi1uzind  14143  sgrp2nmndlem4  18482  zndvds  20669  wsuceq123  33735  atlrelat1  37262  cvlatcvr1  37282  dih11  39206  wessf1ornlem  42611  mullimc  43047  mullimcf  43054  icccncfext  43318  stoweidlem34  43465  stoweidlem49  43480  stoweidlem57  43488  sigarexp  44262  f1ocof1ob  44460  el0ldepsnzr  45696
  Copyright terms: Public domain W3C validator