| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syld3an1 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
| Ref | Expression |
|---|---|
| syld3an1.1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) |
| syld3an1.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syld3an1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syld3an1.1 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) | |
| 2 | simp2 1137 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜓) | |
| 3 | simp3 1138 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜃) | |
| 4 | syld3an1.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1dom2g 8887 f1domfi2 9086 entrfi 9094 entrfir 9095 domtrfil 9096 domtrfi 9097 domtrfir 9098 php3 9113 findcard3 9162 npncan 11377 nnpcan 11379 ppncan 11398 muldivdir 11809 subdivcomb1 11811 div2neg 11839 ltmuldiv 11990 opfi1uzind 14413 sgrp2nmndlem4 18831 zndvds 21481 wsuceq123 35848 atlrelat1 39360 cvlatcvr1 39380 dih11 41304 wessf1ornlem 45222 mullimc 45656 mullimcf 45663 icccncfext 45925 stoweidlem34 46072 stoweidlem49 46087 stoweidlem57 46095 sigarexp 46897 f1ocof1ob 47112 el0ldepsnzr 48499 |
| Copyright terms: Public domain | W3C validator |