MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syld3an1 Structured version   Visualization version   GIF version

Theorem syld3an1 1412
Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.) (Proof shortened by Wolf Lammen, 26-Jun-2022.)
Hypotheses
Ref Expression
syld3an1.1 ((𝜒𝜓𝜃) → 𝜑)
syld3an1.2 ((𝜑𝜓𝜃) → 𝜏)
Assertion
Ref Expression
syld3an1 ((𝜒𝜓𝜃) → 𝜏)

Proof of Theorem syld3an1
StepHypRef Expression
1 syld3an1.1 . 2 ((𝜒𝜓𝜃) → 𝜑)
2 simp2 1137 . 2 ((𝜒𝜓𝜃) → 𝜓)
3 simp3 1138 . 2 ((𝜒𝜓𝜃) → 𝜃)
4 syld3an1.2 . 2 ((𝜑𝜓𝜃) → 𝜏)
51, 2, 3, 4syl3anc 1373 1 ((𝜒𝜓𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  f1dom2g  8982  f1domfi2  9194  entrfi  9202  entrfir  9203  domtrfil  9204  domtrfi  9205  domtrfir  9206  php3  9221  findcard3  9288  npncan  11502  nnpcan  11504  ppncan  11523  muldivdir  11932  subdivcomb1  11934  div2neg  11962  ltmuldiv  12113  opfi1uzind  14527  sgrp2nmndlem4  18904  zndvds  21508  wsuceq123  35778  atlrelat1  39285  cvlatcvr1  39305  dih11  41230  wessf1ornlem  45157  mullimc  45593  mullimcf  45600  icccncfext  45864  stoweidlem34  46011  stoweidlem49  46026  stoweidlem57  46034  sigarexp  46836  f1ocof1ob  47058  el0ldepsnzr  48391
  Copyright terms: Public domain W3C validator