| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syld3an1 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
| Ref | Expression |
|---|---|
| syld3an1.1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) |
| syld3an1.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syld3an1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syld3an1.1 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) | |
| 2 | simp2 1137 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜓) | |
| 3 | simp3 1138 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜃) | |
| 4 | syld3an1.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1dom2g 8918 f1domfi2 9123 entrfi 9131 entrfir 9132 domtrfil 9133 domtrfi 9134 domtrfir 9135 php3 9150 findcard3 9205 npncan 11419 nnpcan 11421 ppncan 11440 muldivdir 11851 subdivcomb1 11853 div2neg 11881 ltmuldiv 12032 opfi1uzind 14452 sgrp2nmndlem4 18831 zndvds 21435 wsuceq123 35775 atlrelat1 39287 cvlatcvr1 39307 dih11 41232 wessf1ornlem 45152 mullimc 45587 mullimcf 45594 icccncfext 45858 stoweidlem34 46005 stoweidlem49 46020 stoweidlem57 46028 sigarexp 46830 f1ocof1ob 47055 el0ldepsnzr 48429 |
| Copyright terms: Public domain | W3C validator |