MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syld3an1 Structured version   Visualization version   GIF version

Theorem syld3an1 1412
Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.) (Proof shortened by Wolf Lammen, 26-Jun-2022.)
Hypotheses
Ref Expression
syld3an1.1 ((𝜒𝜓𝜃) → 𝜑)
syld3an1.2 ((𝜑𝜓𝜃) → 𝜏)
Assertion
Ref Expression
syld3an1 ((𝜒𝜓𝜃) → 𝜏)

Proof of Theorem syld3an1
StepHypRef Expression
1 syld3an1.1 . 2 ((𝜒𝜓𝜃) → 𝜑)
2 simp2 1137 . 2 ((𝜒𝜓𝜃) → 𝜓)
3 simp3 1138 . 2 ((𝜒𝜓𝜃) → 𝜃)
4 syld3an1.2 . 2 ((𝜑𝜓𝜃) → 𝜏)
51, 2, 3, 4syl3anc 1373 1 ((𝜒𝜓𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  f1dom2g  8918  f1domfi2  9123  entrfi  9131  entrfir  9132  domtrfil  9133  domtrfi  9134  domtrfir  9135  php3  9150  findcard3  9205  npncan  11419  nnpcan  11421  ppncan  11440  muldivdir  11851  subdivcomb1  11853  div2neg  11881  ltmuldiv  12032  opfi1uzind  14452  sgrp2nmndlem4  18831  zndvds  21435  wsuceq123  35775  atlrelat1  39287  cvlatcvr1  39307  dih11  41232  wessf1ornlem  45152  mullimc  45587  mullimcf  45594  icccncfext  45858  stoweidlem34  46005  stoweidlem49  46020  stoweidlem57  46028  sigarexp  46830  f1ocof1ob  47055  el0ldepsnzr  48429
  Copyright terms: Public domain W3C validator