Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syld3an1 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
Ref | Expression |
---|---|
syld3an1.1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) |
syld3an1.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syld3an1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syld3an1.1 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) | |
2 | simp2 1136 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜓) | |
3 | simp3 1137 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜃) | |
4 | syld3an1.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: f1dom2g 8766 f1domfi2 8977 entrfi 8985 entrfir 8986 domtrfil 8987 domtrfi 8988 domtrfir 8989 php3 9004 npncan 11251 nnpcan 11253 ppncan 11272 muldivdir 11677 subdivcomb1 11679 div2neg 11707 ltmuldiv 11857 opfi1uzind 14224 sgrp2nmndlem4 18576 zndvds 20766 wsuceq123 33817 atlrelat1 37342 cvlatcvr1 37362 dih11 39286 wessf1ornlem 42729 mullimc 43164 mullimcf 43171 icccncfext 43435 stoweidlem34 43582 stoweidlem49 43597 stoweidlem57 43605 sigarexp 44386 f1ocof1ob 44584 el0ldepsnzr 45819 |
Copyright terms: Public domain | W3C validator |