| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syld3an1 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
| Ref | Expression |
|---|---|
| syld3an1.1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) |
| syld3an1.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syld3an1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syld3an1.1 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) | |
| 2 | simp2 1137 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜓) | |
| 3 | simp3 1138 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜃) | |
| 4 | syld3an1.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1dom2g 8902 f1domfi2 9102 entrfi 9110 entrfir 9111 domtrfil 9112 domtrfi 9113 domtrfir 9114 php3 9129 findcard3 9178 npncan 11393 nnpcan 11395 ppncan 11414 muldivdir 11825 subdivcomb1 11827 div2neg 11855 ltmuldiv 12006 opfi1uzind 14425 sgrp2nmndlem4 18844 zndvds 21495 wsuceq123 35928 atlrelat1 39493 cvlatcvr1 39513 dih11 41437 wessf1ornlem 45345 mullimc 45778 mullimcf 45785 icccncfext 46047 stoweidlem34 46194 stoweidlem49 46209 stoweidlem57 46217 sigarexp 47019 f1ocof1ob 47243 el0ldepsnzr 48629 |
| Copyright terms: Public domain | W3C validator |