![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syld3an1 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
Ref | Expression |
---|---|
syld3an1.1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) |
syld3an1.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syld3an1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syld3an1.1 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) | |
2 | simp2 1136 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜓) | |
3 | simp3 1137 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜃) | |
4 | syld3an1.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: f1dom2g 9008 f1domfi2 9219 entrfi 9227 entrfir 9228 domtrfil 9229 domtrfi 9230 domtrfir 9231 php3 9246 findcard3 9315 npncan 11527 nnpcan 11529 ppncan 11548 muldivdir 11957 subdivcomb1 11959 div2neg 11987 ltmuldiv 12138 opfi1uzind 14546 sgrp2nmndlem4 18953 zndvds 21585 wsuceq123 35795 atlrelat1 39302 cvlatcvr1 39322 dih11 41247 wessf1ornlem 45127 mullimc 45571 mullimcf 45578 icccncfext 45842 stoweidlem34 45989 stoweidlem49 46004 stoweidlem57 46012 sigarexp 46814 f1ocof1ob 47030 el0ldepsnzr 48312 |
Copyright terms: Public domain | W3C validator |