| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syld3an1 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
| Ref | Expression |
|---|---|
| syld3an1.1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) |
| syld3an1.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syld3an1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syld3an1.1 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) | |
| 2 | simp2 1137 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜓) | |
| 3 | simp3 1138 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜃) | |
| 4 | syld3an1.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1dom2g 8944 f1domfi2 9152 entrfi 9160 entrfir 9161 domtrfil 9162 domtrfi 9163 domtrfir 9164 php3 9179 findcard3 9236 npncan 11450 nnpcan 11452 ppncan 11471 muldivdir 11882 subdivcomb1 11884 div2neg 11912 ltmuldiv 12063 opfi1uzind 14483 sgrp2nmndlem4 18862 zndvds 21466 wsuceq123 35809 atlrelat1 39321 cvlatcvr1 39341 dih11 41266 wessf1ornlem 45186 mullimc 45621 mullimcf 45628 icccncfext 45892 stoweidlem34 46039 stoweidlem49 46054 stoweidlem57 46062 sigarexp 46864 f1ocof1ob 47086 el0ldepsnzr 48460 |
| Copyright terms: Public domain | W3C validator |