![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syld3an1 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
Ref | Expression |
---|---|
syld3an1.1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) |
syld3an1.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syld3an1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syld3an1.1 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) | |
2 | simp2 1136 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜓) | |
3 | simp3 1137 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜃) | |
4 | syld3an1.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1088 |
This theorem is referenced by: f1dom2g 8969 f1domfi2 9189 entrfi 9197 entrfir 9198 domtrfil 9199 domtrfi 9200 domtrfir 9201 php3 9216 findcard3 9289 npncan 11486 nnpcan 11488 ppncan 11507 muldivdir 11912 subdivcomb1 11914 div2neg 11942 ltmuldiv 12092 opfi1uzind 14467 sgrp2nmndlem4 18846 zndvds 21325 wsuceq123 35091 atlrelat1 38495 cvlatcvr1 38515 dih11 40440 wessf1ornlem 44183 mullimc 44631 mullimcf 44638 icccncfext 44902 stoweidlem34 45049 stoweidlem49 45064 stoweidlem57 45072 sigarexp 45874 f1ocof1ob 46088 el0ldepsnzr 47236 |
Copyright terms: Public domain | W3C validator |