![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syld3an1 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
Ref | Expression |
---|---|
syld3an1.1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) |
syld3an1.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syld3an1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syld3an1.1 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) | |
2 | simp2 1137 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜓) | |
3 | simp3 1138 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜃) | |
4 | syld3an1.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: f1dom2g 9029 f1domfi2 9248 entrfi 9256 entrfir 9257 domtrfil 9258 domtrfi 9259 domtrfir 9260 php3 9275 findcard3 9346 npncan 11557 nnpcan 11559 ppncan 11578 muldivdir 11987 subdivcomb1 11989 div2neg 12017 ltmuldiv 12168 opfi1uzind 14560 sgrp2nmndlem4 18963 zndvds 21591 wsuceq123 35778 atlrelat1 39277 cvlatcvr1 39297 dih11 41222 wessf1ornlem 45092 mullimc 45537 mullimcf 45544 icccncfext 45808 stoweidlem34 45955 stoweidlem49 45970 stoweidlem57 45978 sigarexp 46780 f1ocof1ob 46996 el0ldepsnzr 48196 |
Copyright terms: Public domain | W3C validator |