MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syld3an1 Structured version   Visualization version   GIF version

Theorem syld3an1 1412
Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.) (Proof shortened by Wolf Lammen, 26-Jun-2022.)
Hypotheses
Ref Expression
syld3an1.1 ((𝜒𝜓𝜃) → 𝜑)
syld3an1.2 ((𝜑𝜓𝜃) → 𝜏)
Assertion
Ref Expression
syld3an1 ((𝜒𝜓𝜃) → 𝜏)

Proof of Theorem syld3an1
StepHypRef Expression
1 syld3an1.1 . 2 ((𝜒𝜓𝜃) → 𝜑)
2 simp2 1137 . 2 ((𝜒𝜓𝜃) → 𝜓)
3 simp3 1138 . 2 ((𝜒𝜓𝜃) → 𝜃)
4 syld3an1.2 . 2 ((𝜑𝜓𝜃) → 𝜏)
51, 2, 3, 4syl3anc 1373 1 ((𝜒𝜓𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  f1dom2g  8902  f1domfi2  9106  entrfi  9114  entrfir  9115  domtrfil  9116  domtrfi  9117  domtrfir  9118  php3  9133  findcard3  9187  npncan  11404  nnpcan  11406  ppncan  11425  muldivdir  11836  subdivcomb1  11838  div2neg  11866  ltmuldiv  12017  opfi1uzind  14437  sgrp2nmndlem4  18821  zndvds  21475  wsuceq123  35807  atlrelat1  39319  cvlatcvr1  39339  dih11  41264  wessf1ornlem  45183  mullimc  45617  mullimcf  45624  icccncfext  45888  stoweidlem34  46035  stoweidlem49  46050  stoweidlem57  46058  sigarexp  46860  f1ocof1ob  47085  el0ldepsnzr  48472
  Copyright terms: Public domain W3C validator