MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1domfi2 Structured version   Visualization version   GIF version

Theorem f1domfi2 8942
Description: If the domain of a one-to-one function is finite, then the function's domain is dominated by its codomain when the latter is a set. This theorem is proved without using the Axiom of Power Sets (unlike f1dom2g 8732). (Contributed by BTernaryTau, 24-Nov-2024.)
Assertion
Ref Expression
f1domfi2 ((𝐴 ∈ Fin ∧ 𝐵𝑉𝐹:𝐴1-1𝐵) → 𝐴𝐵)

Proof of Theorem f1domfi2
StepHypRef Expression
1 f1fn 6668 . . . . 5 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 fnfi 8938 . . . . 5 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)
31, 2sylan 580 . . . 4 ((𝐹:𝐴1-1𝐵𝐴 ∈ Fin) → 𝐹 ∈ Fin)
43ancoms 459 . . 3 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
543adant2 1130 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝑉𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
6 f1dom3g 8730 . 2 ((𝐹 ∈ Fin ∧ 𝐵𝑉𝐹:𝐴1-1𝐵) → 𝐴𝐵)
75, 6syld3an1 1409 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉𝐹:𝐴1-1𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2110   class class class wbr 5079   Fn wfn 6426  1-1wf1 6428  cdom 8706  Fincfn 8708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-om 7702  df-1o 8282  df-en 8709  df-dom 8710  df-fin 8712
This theorem is referenced by:  domtrfil  8952  ssdomfi2  8957
  Copyright terms: Public domain W3C validator