![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1domfi2 | Structured version Visualization version GIF version |
Description: If the domain of a one-to-one function is finite, then the function's domain is dominated by its codomain when the latter is a set. This theorem is proved without using the Axiom of Power Sets (unlike f1dom2g 8965). (Contributed by BTernaryTau, 24-Nov-2024.) |
Ref | Expression |
---|---|
f1domfi2 | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 6789 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfi 9181 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ Fin) | |
3 | 1, 2 | sylan 581 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ Fin) |
4 | 3 | ancoms 460 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹 ∈ Fin) |
5 | 4 | 3adant2 1132 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹 ∈ Fin) |
6 | f1dom3g 8963 | . 2 ⊢ ((𝐹 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | |
7 | 5, 6 | syld3an1 1411 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 ∈ wcel 2107 class class class wbr 5149 Fn wfn 6539 –1-1→wf1 6541 ≼ cdom 8937 Fincfn 8939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-om 7856 df-1o 8466 df-en 8940 df-dom 8941 df-fin 8943 |
This theorem is referenced by: domtrfil 9195 ssdomfi2 9200 |
Copyright terms: Public domain | W3C validator |