MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1domfi2 Structured version   Visualization version   GIF version

Theorem f1domfi2 9187
Description: If the domain of a one-to-one function is finite, then the function's domain is dominated by its codomain when the latter is a set. This theorem is proved without using the Axiom of Power Sets (unlike f1dom2g 8967). (Contributed by BTernaryTau, 24-Nov-2024.)
Assertion
Ref Expression
f1domfi2 ((𝐴 ∈ Fin ∧ 𝐵𝑉𝐹:𝐴1-1𝐵) → 𝐴𝐵)

Proof of Theorem f1domfi2
StepHypRef Expression
1 f1fn 6782 . . . . 5 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 fnfi 9183 . . . . 5 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)
31, 2sylan 579 . . . 4 ((𝐹:𝐴1-1𝐵𝐴 ∈ Fin) → 𝐹 ∈ Fin)
43ancoms 458 . . 3 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
543adant2 1128 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝑉𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
6 f1dom3g 8965 . 2 ((𝐹 ∈ Fin ∧ 𝐵𝑉𝐹:𝐴1-1𝐵) → 𝐴𝐵)
75, 6syld3an1 1407 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉𝐹:𝐴1-1𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084  wcel 2098   class class class wbr 5141   Fn wfn 6532  1-1wf1 6534  cdom 8939  Fincfn 8941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-om 7853  df-1o 8467  df-en 8942  df-dom 8943  df-fin 8945
This theorem is referenced by:  domtrfil  9197  ssdomfi2  9202
  Copyright terms: Public domain W3C validator