MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2nmndlem4 Structured version   Visualization version   GIF version

Theorem sgrp2nmndlem4 18837
Description: Lemma 4 for sgrp2nmnd 18839: M is a semigroup. (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
sgrp2nmnd.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
Assertion
Ref Expression
sgrp2nmndlem4 ((♯‘𝑆) = 2 → 𝑀 ∈ Smgrp)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀
Allowed substitution hint:   𝑀(𝑦)

Proof of Theorem sgrp2nmndlem4
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgm2nsgrp.s . . . 4 𝑆 = {𝐴, 𝐵}
21hashprdifel 14339 . . 3 ((♯‘𝑆) = 2 → (𝐴𝑆𝐵𝑆𝐴𝐵))
3 3simpa 1148 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴𝑆𝐵𝑆))
4 mgm2nsgrp.b . . . 4 (Base‘𝑀) = 𝑆
5 sgrp2nmnd.o . . . 4 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
61, 4, 5sgrp2nmndlem1 18832 . . 3 ((𝐴𝑆𝐵𝑆) → 𝑀 ∈ Mgm)
72, 3, 63syl 18 . 2 ((♯‘𝑆) = 2 → 𝑀 ∈ Mgm)
8 eqid 2729 . . . . . . . . . . 11 (+g𝑀) = (+g𝑀)
91, 4, 5, 8sgrp2nmndlem2 18833 . . . . . . . . . 10 ((𝐴𝑆𝐴𝑆) → (𝐴(+g𝑀)𝐴) = 𝐴)
109oveq1d 7384 . . . . . . . . 9 ((𝐴𝑆𝐴𝑆) → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐴(+g𝑀)𝐴))
119oveq2d 7385 . . . . . . . . 9 ((𝐴𝑆𝐴𝑆) → (𝐴(+g𝑀)(𝐴(+g𝑀)𝐴)) = (𝐴(+g𝑀)𝐴))
1210, 11eqtr4d 2767 . . . . . . . 8 ((𝐴𝑆𝐴𝑆) → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐴)))
1312anidms 566 . . . . . . 7 (𝐴𝑆 → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐴)))
14133ad2ant1 1133 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐴)))
159anidms 566 . . . . . . . . . 10 (𝐴𝑆 → (𝐴(+g𝑀)𝐴) = 𝐴)
1615adantr 480 . . . . . . . . 9 ((𝐴𝑆𝐵𝑆) → (𝐴(+g𝑀)𝐴) = 𝐴)
1716oveq1d 7384 . . . . . . . 8 ((𝐴𝑆𝐵𝑆) → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) = (𝐴(+g𝑀)𝐵))
181, 4, 5, 8sgrp2nmndlem2 18833 . . . . . . . . . 10 ((𝐴𝑆𝐵𝑆) → (𝐴(+g𝑀)𝐵) = 𝐴)
1918oveq2d 7385 . . . . . . . . 9 ((𝐴𝑆𝐵𝑆) → (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)) = (𝐴(+g𝑀)𝐴))
2016, 19, 183eqtr4rd 2775 . . . . . . . 8 ((𝐴𝑆𝐵𝑆) → (𝐴(+g𝑀)𝐵) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)))
2117, 20eqtrd 2764 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)))
22213adant3 1132 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)))
2314, 22jca 511 . . . . 5 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (((𝐴(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐴)) ∧ ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵))))
24183adant3 1132 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴(+g𝑀)𝐵) = 𝐴)
251, 4, 5, 8sgrp2nmndlem3 18834 . . . . . . 7 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐵(+g𝑀)𝐴) = 𝐵)
2625oveq2d 7385 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴(+g𝑀)(𝐵(+g𝑀)𝐴)) = (𝐴(+g𝑀)𝐵))
2724oveq1d 7384 . . . . . . 7 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐴(+g𝑀)𝐵)(+g𝑀)𝐴) = (𝐴(+g𝑀)𝐴))
28153ad2ant1 1133 . . . . . . 7 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴(+g𝑀)𝐴) = 𝐴)
2927, 28eqtrd 2764 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐴(+g𝑀)𝐵)(+g𝑀)𝐴) = 𝐴)
3024, 26, 293eqtr4rd 2775 . . . . 5 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐴(+g𝑀)𝐵)(+g𝑀)𝐴) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝐴)))
31 simp2 1137 . . . . . . . 8 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐵𝑆)
321, 4, 5, 8sgrp2nmndlem3 18834 . . . . . . . 8 ((𝐵𝑆𝐵𝑆𝐴𝐵) → (𝐵(+g𝑀)𝐵) = 𝐵)
3331, 32syld3an1 1412 . . . . . . 7 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐵(+g𝑀)𝐵) = 𝐵)
3433oveq2d 7385 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴(+g𝑀)(𝐵(+g𝑀)𝐵)) = (𝐴(+g𝑀)𝐵))
3518oveq1d 7384 . . . . . . . 8 ((𝐴𝑆𝐵𝑆) → ((𝐴(+g𝑀)𝐵)(+g𝑀)𝐵) = (𝐴(+g𝑀)𝐵))
3635, 18eqtrd 2764 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → ((𝐴(+g𝑀)𝐵)(+g𝑀)𝐵) = 𝐴)
37363adant3 1132 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐴(+g𝑀)𝐵)(+g𝑀)𝐵) = 𝐴)
3824, 34, 373eqtr4rd 2775 . . . . 5 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐴(+g𝑀)𝐵)(+g𝑀)𝐵) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝐵)))
3923, 30, 38jca32 515 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((((𝐴(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐴)) ∧ ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵))) ∧ (((𝐴(+g𝑀)𝐵)(+g𝑀)𝐴) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝐴)) ∧ ((𝐴(+g𝑀)𝐵)(+g𝑀)𝐵) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝐵)))))
4025oveq1d 7384 . . . . . . 7 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐵(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐵(+g𝑀)𝐴))
4128oveq2d 7385 . . . . . . 7 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐵(+g𝑀)(𝐴(+g𝑀)𝐴)) = (𝐵(+g𝑀)𝐴))
4240, 41eqtr4d 2767 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐵(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝐴)))
4324oveq2d 7385 . . . . . . 7 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐵(+g𝑀)(𝐴(+g𝑀)𝐵)) = (𝐵(+g𝑀)𝐴))
4425oveq1d 7384 . . . . . . . 8 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐵(+g𝑀)𝐴)(+g𝑀)𝐵) = (𝐵(+g𝑀)𝐵))
4544, 33eqtrd 2764 . . . . . . 7 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐵(+g𝑀)𝐴)(+g𝑀)𝐵) = 𝐵)
4625, 43, 453eqtr4rd 2775 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐵(+g𝑀)𝐴)(+g𝑀)𝐵) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝐵)))
4742, 46jca 511 . . . . 5 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (((𝐵(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝐴)) ∧ ((𝐵(+g𝑀)𝐴)(+g𝑀)𝐵) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝐵))))
4825oveq2d 7385 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐵(+g𝑀)(𝐵(+g𝑀)𝐴)) = (𝐵(+g𝑀)𝐵))
4933oveq1d 7384 . . . . . . 7 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐵(+g𝑀)𝐵)(+g𝑀)𝐴) = (𝐵(+g𝑀)𝐴))
5049, 25eqtrd 2764 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐵(+g𝑀)𝐵)(+g𝑀)𝐴) = 𝐵)
5133, 48, 503eqtr4rd 2775 . . . . 5 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐵(+g𝑀)𝐵)(+g𝑀)𝐴) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝐴)))
5232oveq1d 7384 . . . . . . 7 ((𝐵𝑆𝐵𝑆𝐴𝐵) → ((𝐵(+g𝑀)𝐵)(+g𝑀)𝐵) = (𝐵(+g𝑀)𝐵))
5332oveq2d 7385 . . . . . . 7 ((𝐵𝑆𝐵𝑆𝐴𝐵) → (𝐵(+g𝑀)(𝐵(+g𝑀)𝐵)) = (𝐵(+g𝑀)𝐵))
5452, 53eqtr4d 2767 . . . . . 6 ((𝐵𝑆𝐵𝑆𝐴𝐵) → ((𝐵(+g𝑀)𝐵)(+g𝑀)𝐵) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝐵)))
5531, 54syld3an1 1412 . . . . 5 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐵(+g𝑀)𝐵)(+g𝑀)𝐵) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝐵)))
5647, 51, 55jca32 515 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((((𝐵(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝐴)) ∧ ((𝐵(+g𝑀)𝐴)(+g𝑀)𝐵) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝐵))) ∧ (((𝐵(+g𝑀)𝐵)(+g𝑀)𝐴) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝐴)) ∧ ((𝐵(+g𝑀)𝐵)(+g𝑀)𝐵) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝐵)))))
57 oveq1 7376 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎(+g𝑀)𝑏) = (𝐴(+g𝑀)𝑏))
5857oveq1d 7384 . . . . . . . . 9 (𝑎 = 𝐴 → ((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = ((𝐴(+g𝑀)𝑏)(+g𝑀)𝑐))
59 oveq1 7376 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐)) = (𝐴(+g𝑀)(𝑏(+g𝑀)𝑐)))
6058, 59eqeq12d 2745 . . . . . . . 8 (𝑎 = 𝐴 → (((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐)) ↔ ((𝐴(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝑏(+g𝑀)𝑐))))
61602ralbidv 3199 . . . . . . 7 (𝑎 = 𝐴 → (∀𝑏 ∈ {𝐴, 𝐵}∀𝑐 ∈ {𝐴, 𝐵} ((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐)) ↔ ∀𝑏 ∈ {𝐴, 𝐵}∀𝑐 ∈ {𝐴, 𝐵} ((𝐴(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝑏(+g𝑀)𝑐))))
62 oveq1 7376 . . . . . . . . . 10 (𝑎 = 𝐵 → (𝑎(+g𝑀)𝑏) = (𝐵(+g𝑀)𝑏))
6362oveq1d 7384 . . . . . . . . 9 (𝑎 = 𝐵 → ((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = ((𝐵(+g𝑀)𝑏)(+g𝑀)𝑐))
64 oveq1 7376 . . . . . . . . 9 (𝑎 = 𝐵 → (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐)) = (𝐵(+g𝑀)(𝑏(+g𝑀)𝑐)))
6563, 64eqeq12d 2745 . . . . . . . 8 (𝑎 = 𝐵 → (((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐)) ↔ ((𝐵(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝑏(+g𝑀)𝑐))))
66652ralbidv 3199 . . . . . . 7 (𝑎 = 𝐵 → (∀𝑏 ∈ {𝐴, 𝐵}∀𝑐 ∈ {𝐴, 𝐵} ((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐)) ↔ ∀𝑏 ∈ {𝐴, 𝐵}∀𝑐 ∈ {𝐴, 𝐵} ((𝐵(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝑏(+g𝑀)𝑐))))
6761, 66ralprg 4656 . . . . . 6 ((𝐴𝑆𝐵𝑆) → (∀𝑎 ∈ {𝐴, 𝐵}∀𝑏 ∈ {𝐴, 𝐵}∀𝑐 ∈ {𝐴, 𝐵} ((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐)) ↔ (∀𝑏 ∈ {𝐴, 𝐵}∀𝑐 ∈ {𝐴, 𝐵} ((𝐴(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝑏(+g𝑀)𝑐)) ∧ ∀𝑏 ∈ {𝐴, 𝐵}∀𝑐 ∈ {𝐴, 𝐵} ((𝐵(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝑏(+g𝑀)𝑐)))))
68 oveq2 7377 . . . . . . . . . . 11 (𝑏 = 𝐴 → (𝐴(+g𝑀)𝑏) = (𝐴(+g𝑀)𝐴))
6968oveq1d 7384 . . . . . . . . . 10 (𝑏 = 𝐴 → ((𝐴(+g𝑀)𝑏)(+g𝑀)𝑐) = ((𝐴(+g𝑀)𝐴)(+g𝑀)𝑐))
70 oveq1 7376 . . . . . . . . . . 11 (𝑏 = 𝐴 → (𝑏(+g𝑀)𝑐) = (𝐴(+g𝑀)𝑐))
7170oveq2d 7385 . . . . . . . . . 10 (𝑏 = 𝐴 → (𝐴(+g𝑀)(𝑏(+g𝑀)𝑐)) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝑐)))
7269, 71eqeq12d 2745 . . . . . . . . 9 (𝑏 = 𝐴 → (((𝐴(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝑏(+g𝑀)𝑐)) ↔ ((𝐴(+g𝑀)𝐴)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝑐))))
7372ralbidv 3156 . . . . . . . 8 (𝑏 = 𝐴 → (∀𝑐 ∈ {𝐴, 𝐵} ((𝐴(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝑏(+g𝑀)𝑐)) ↔ ∀𝑐 ∈ {𝐴, 𝐵} ((𝐴(+g𝑀)𝐴)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝑐))))
74 oveq2 7377 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝐴(+g𝑀)𝑏) = (𝐴(+g𝑀)𝐵))
7574oveq1d 7384 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝐴(+g𝑀)𝑏)(+g𝑀)𝑐) = ((𝐴(+g𝑀)𝐵)(+g𝑀)𝑐))
76 oveq1 7376 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑏(+g𝑀)𝑐) = (𝐵(+g𝑀)𝑐))
7776oveq2d 7385 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝐴(+g𝑀)(𝑏(+g𝑀)𝑐)) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝑐)))
7875, 77eqeq12d 2745 . . . . . . . . 9 (𝑏 = 𝐵 → (((𝐴(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝑏(+g𝑀)𝑐)) ↔ ((𝐴(+g𝑀)𝐵)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝑐))))
7978ralbidv 3156 . . . . . . . 8 (𝑏 = 𝐵 → (∀𝑐 ∈ {𝐴, 𝐵} ((𝐴(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝑏(+g𝑀)𝑐)) ↔ ∀𝑐 ∈ {𝐴, 𝐵} ((𝐴(+g𝑀)𝐵)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝑐))))
8073, 79ralprg 4656 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → (∀𝑏 ∈ {𝐴, 𝐵}∀𝑐 ∈ {𝐴, 𝐵} ((𝐴(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝑏(+g𝑀)𝑐)) ↔ (∀𝑐 ∈ {𝐴, 𝐵} ((𝐴(+g𝑀)𝐴)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝑐)) ∧ ∀𝑐 ∈ {𝐴, 𝐵} ((𝐴(+g𝑀)𝐵)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝑐)))))
81 oveq2 7377 . . . . . . . . . . 11 (𝑏 = 𝐴 → (𝐵(+g𝑀)𝑏) = (𝐵(+g𝑀)𝐴))
8281oveq1d 7384 . . . . . . . . . 10 (𝑏 = 𝐴 → ((𝐵(+g𝑀)𝑏)(+g𝑀)𝑐) = ((𝐵(+g𝑀)𝐴)(+g𝑀)𝑐))
8370oveq2d 7385 . . . . . . . . . 10 (𝑏 = 𝐴 → (𝐵(+g𝑀)(𝑏(+g𝑀)𝑐)) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝑐)))
8482, 83eqeq12d 2745 . . . . . . . . 9 (𝑏 = 𝐴 → (((𝐵(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝑏(+g𝑀)𝑐)) ↔ ((𝐵(+g𝑀)𝐴)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝑐))))
8584ralbidv 3156 . . . . . . . 8 (𝑏 = 𝐴 → (∀𝑐 ∈ {𝐴, 𝐵} ((𝐵(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝑏(+g𝑀)𝑐)) ↔ ∀𝑐 ∈ {𝐴, 𝐵} ((𝐵(+g𝑀)𝐴)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝑐))))
86 oveq2 7377 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝐵(+g𝑀)𝑏) = (𝐵(+g𝑀)𝐵))
8786oveq1d 7384 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝐵(+g𝑀)𝑏)(+g𝑀)𝑐) = ((𝐵(+g𝑀)𝐵)(+g𝑀)𝑐))
8876oveq2d 7385 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝐵(+g𝑀)(𝑏(+g𝑀)𝑐)) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝑐)))
8987, 88eqeq12d 2745 . . . . . . . . 9 (𝑏 = 𝐵 → (((𝐵(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝑏(+g𝑀)𝑐)) ↔ ((𝐵(+g𝑀)𝐵)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝑐))))
9089ralbidv 3156 . . . . . . . 8 (𝑏 = 𝐵 → (∀𝑐 ∈ {𝐴, 𝐵} ((𝐵(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝑏(+g𝑀)𝑐)) ↔ ∀𝑐 ∈ {𝐴, 𝐵} ((𝐵(+g𝑀)𝐵)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝑐))))
9185, 90ralprg 4656 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → (∀𝑏 ∈ {𝐴, 𝐵}∀𝑐 ∈ {𝐴, 𝐵} ((𝐵(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝑏(+g𝑀)𝑐)) ↔ (∀𝑐 ∈ {𝐴, 𝐵} ((𝐵(+g𝑀)𝐴)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝑐)) ∧ ∀𝑐 ∈ {𝐴, 𝐵} ((𝐵(+g𝑀)𝐵)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝑐)))))
9280, 91anbi12d 632 . . . . . 6 ((𝐴𝑆𝐵𝑆) → ((∀𝑏 ∈ {𝐴, 𝐵}∀𝑐 ∈ {𝐴, 𝐵} ((𝐴(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝑏(+g𝑀)𝑐)) ∧ ∀𝑏 ∈ {𝐴, 𝐵}∀𝑐 ∈ {𝐴, 𝐵} ((𝐵(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝑏(+g𝑀)𝑐))) ↔ ((∀𝑐 ∈ {𝐴, 𝐵} ((𝐴(+g𝑀)𝐴)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝑐)) ∧ ∀𝑐 ∈ {𝐴, 𝐵} ((𝐴(+g𝑀)𝐵)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝑐))) ∧ (∀𝑐 ∈ {𝐴, 𝐵} ((𝐵(+g𝑀)𝐴)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝑐)) ∧ ∀𝑐 ∈ {𝐴, 𝐵} ((𝐵(+g𝑀)𝐵)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝑐))))))
93 oveq2 7377 . . . . . . . . . 10 (𝑐 = 𝐴 → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝑐) = ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐴))
94 oveq2 7377 . . . . . . . . . . 11 (𝑐 = 𝐴 → (𝐴(+g𝑀)𝑐) = (𝐴(+g𝑀)𝐴))
9594oveq2d 7385 . . . . . . . . . 10 (𝑐 = 𝐴 → (𝐴(+g𝑀)(𝐴(+g𝑀)𝑐)) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐴)))
9693, 95eqeq12d 2745 . . . . . . . . 9 (𝑐 = 𝐴 → (((𝐴(+g𝑀)𝐴)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝑐)) ↔ ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐴))))
97 oveq2 7377 . . . . . . . . . 10 (𝑐 = 𝐵 → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝑐) = ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵))
98 oveq2 7377 . . . . . . . . . . 11 (𝑐 = 𝐵 → (𝐴(+g𝑀)𝑐) = (𝐴(+g𝑀)𝐵))
9998oveq2d 7385 . . . . . . . . . 10 (𝑐 = 𝐵 → (𝐴(+g𝑀)(𝐴(+g𝑀)𝑐)) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)))
10097, 99eqeq12d 2745 . . . . . . . . 9 (𝑐 = 𝐵 → (((𝐴(+g𝑀)𝐴)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝑐)) ↔ ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵))))
10196, 100ralprg 4656 . . . . . . . 8 ((𝐴𝑆𝐵𝑆) → (∀𝑐 ∈ {𝐴, 𝐵} ((𝐴(+g𝑀)𝐴)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝑐)) ↔ (((𝐴(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐴)) ∧ ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)))))
102 oveq2 7377 . . . . . . . . . 10 (𝑐 = 𝐴 → ((𝐴(+g𝑀)𝐵)(+g𝑀)𝑐) = ((𝐴(+g𝑀)𝐵)(+g𝑀)𝐴))
103 oveq2 7377 . . . . . . . . . . 11 (𝑐 = 𝐴 → (𝐵(+g𝑀)𝑐) = (𝐵(+g𝑀)𝐴))
104103oveq2d 7385 . . . . . . . . . 10 (𝑐 = 𝐴 → (𝐴(+g𝑀)(𝐵(+g𝑀)𝑐)) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝐴)))
105102, 104eqeq12d 2745 . . . . . . . . 9 (𝑐 = 𝐴 → (((𝐴(+g𝑀)𝐵)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝑐)) ↔ ((𝐴(+g𝑀)𝐵)(+g𝑀)𝐴) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝐴))))
106 oveq2 7377 . . . . . . . . . 10 (𝑐 = 𝐵 → ((𝐴(+g𝑀)𝐵)(+g𝑀)𝑐) = ((𝐴(+g𝑀)𝐵)(+g𝑀)𝐵))
107 oveq2 7377 . . . . . . . . . . 11 (𝑐 = 𝐵 → (𝐵(+g𝑀)𝑐) = (𝐵(+g𝑀)𝐵))
108107oveq2d 7385 . . . . . . . . . 10 (𝑐 = 𝐵 → (𝐴(+g𝑀)(𝐵(+g𝑀)𝑐)) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝐵)))
109106, 108eqeq12d 2745 . . . . . . . . 9 (𝑐 = 𝐵 → (((𝐴(+g𝑀)𝐵)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝑐)) ↔ ((𝐴(+g𝑀)𝐵)(+g𝑀)𝐵) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝐵))))
110105, 109ralprg 4656 . . . . . . . 8 ((𝐴𝑆𝐵𝑆) → (∀𝑐 ∈ {𝐴, 𝐵} ((𝐴(+g𝑀)𝐵)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝑐)) ↔ (((𝐴(+g𝑀)𝐵)(+g𝑀)𝐴) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝐴)) ∧ ((𝐴(+g𝑀)𝐵)(+g𝑀)𝐵) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝐵)))))
111101, 110anbi12d 632 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → ((∀𝑐 ∈ {𝐴, 𝐵} ((𝐴(+g𝑀)𝐴)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝑐)) ∧ ∀𝑐 ∈ {𝐴, 𝐵} ((𝐴(+g𝑀)𝐵)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝑐))) ↔ ((((𝐴(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐴)) ∧ ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵))) ∧ (((𝐴(+g𝑀)𝐵)(+g𝑀)𝐴) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝐴)) ∧ ((𝐴(+g𝑀)𝐵)(+g𝑀)𝐵) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝐵))))))
112 oveq2 7377 . . . . . . . . . 10 (𝑐 = 𝐴 → ((𝐵(+g𝑀)𝐴)(+g𝑀)𝑐) = ((𝐵(+g𝑀)𝐴)(+g𝑀)𝐴))
11394oveq2d 7385 . . . . . . . . . 10 (𝑐 = 𝐴 → (𝐵(+g𝑀)(𝐴(+g𝑀)𝑐)) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝐴)))
114112, 113eqeq12d 2745 . . . . . . . . 9 (𝑐 = 𝐴 → (((𝐵(+g𝑀)𝐴)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝑐)) ↔ ((𝐵(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝐴))))
115 oveq2 7377 . . . . . . . . . 10 (𝑐 = 𝐵 → ((𝐵(+g𝑀)𝐴)(+g𝑀)𝑐) = ((𝐵(+g𝑀)𝐴)(+g𝑀)𝐵))
11698oveq2d 7385 . . . . . . . . . 10 (𝑐 = 𝐵 → (𝐵(+g𝑀)(𝐴(+g𝑀)𝑐)) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝐵)))
117115, 116eqeq12d 2745 . . . . . . . . 9 (𝑐 = 𝐵 → (((𝐵(+g𝑀)𝐴)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝑐)) ↔ ((𝐵(+g𝑀)𝐴)(+g𝑀)𝐵) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝐵))))
118114, 117ralprg 4656 . . . . . . . 8 ((𝐴𝑆𝐵𝑆) → (∀𝑐 ∈ {𝐴, 𝐵} ((𝐵(+g𝑀)𝐴)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝑐)) ↔ (((𝐵(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝐴)) ∧ ((𝐵(+g𝑀)𝐴)(+g𝑀)𝐵) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝐵)))))
119 oveq2 7377 . . . . . . . . . 10 (𝑐 = 𝐴 → ((𝐵(+g𝑀)𝐵)(+g𝑀)𝑐) = ((𝐵(+g𝑀)𝐵)(+g𝑀)𝐴))
120103oveq2d 7385 . . . . . . . . . 10 (𝑐 = 𝐴 → (𝐵(+g𝑀)(𝐵(+g𝑀)𝑐)) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝐴)))
121119, 120eqeq12d 2745 . . . . . . . . 9 (𝑐 = 𝐴 → (((𝐵(+g𝑀)𝐵)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝑐)) ↔ ((𝐵(+g𝑀)𝐵)(+g𝑀)𝐴) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝐴))))
122 oveq2 7377 . . . . . . . . . 10 (𝑐 = 𝐵 → ((𝐵(+g𝑀)𝐵)(+g𝑀)𝑐) = ((𝐵(+g𝑀)𝐵)(+g𝑀)𝐵))
123107oveq2d 7385 . . . . . . . . . 10 (𝑐 = 𝐵 → (𝐵(+g𝑀)(𝐵(+g𝑀)𝑐)) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝐵)))
124122, 123eqeq12d 2745 . . . . . . . . 9 (𝑐 = 𝐵 → (((𝐵(+g𝑀)𝐵)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝑐)) ↔ ((𝐵(+g𝑀)𝐵)(+g𝑀)𝐵) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝐵))))
125121, 124ralprg 4656 . . . . . . . 8 ((𝐴𝑆𝐵𝑆) → (∀𝑐 ∈ {𝐴, 𝐵} ((𝐵(+g𝑀)𝐵)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝑐)) ↔ (((𝐵(+g𝑀)𝐵)(+g𝑀)𝐴) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝐴)) ∧ ((𝐵(+g𝑀)𝐵)(+g𝑀)𝐵) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝐵)))))
126118, 125anbi12d 632 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → ((∀𝑐 ∈ {𝐴, 𝐵} ((𝐵(+g𝑀)𝐴)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝑐)) ∧ ∀𝑐 ∈ {𝐴, 𝐵} ((𝐵(+g𝑀)𝐵)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝑐))) ↔ ((((𝐵(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝐴)) ∧ ((𝐵(+g𝑀)𝐴)(+g𝑀)𝐵) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝐵))) ∧ (((𝐵(+g𝑀)𝐵)(+g𝑀)𝐴) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝐴)) ∧ ((𝐵(+g𝑀)𝐵)(+g𝑀)𝐵) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝐵))))))
127111, 126anbi12d 632 . . . . . 6 ((𝐴𝑆𝐵𝑆) → (((∀𝑐 ∈ {𝐴, 𝐵} ((𝐴(+g𝑀)𝐴)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝑐)) ∧ ∀𝑐 ∈ {𝐴, 𝐵} ((𝐴(+g𝑀)𝐵)(+g𝑀)𝑐) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝑐))) ∧ (∀𝑐 ∈ {𝐴, 𝐵} ((𝐵(+g𝑀)𝐴)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝑐)) ∧ ∀𝑐 ∈ {𝐴, 𝐵} ((𝐵(+g𝑀)𝐵)(+g𝑀)𝑐) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝑐)))) ↔ (((((𝐴(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐴)) ∧ ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵))) ∧ (((𝐴(+g𝑀)𝐵)(+g𝑀)𝐴) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝐴)) ∧ ((𝐴(+g𝑀)𝐵)(+g𝑀)𝐵) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝐵)))) ∧ ((((𝐵(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝐴)) ∧ ((𝐵(+g𝑀)𝐴)(+g𝑀)𝐵) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝐵))) ∧ (((𝐵(+g𝑀)𝐵)(+g𝑀)𝐴) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝐴)) ∧ ((𝐵(+g𝑀)𝐵)(+g𝑀)𝐵) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝐵)))))))
12867, 92, 1273bitrd 305 . . . . 5 ((𝐴𝑆𝐵𝑆) → (∀𝑎 ∈ {𝐴, 𝐵}∀𝑏 ∈ {𝐴, 𝐵}∀𝑐 ∈ {𝐴, 𝐵} ((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐)) ↔ (((((𝐴(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐴)) ∧ ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵))) ∧ (((𝐴(+g𝑀)𝐵)(+g𝑀)𝐴) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝐴)) ∧ ((𝐴(+g𝑀)𝐵)(+g𝑀)𝐵) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝐵)))) ∧ ((((𝐵(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝐴)) ∧ ((𝐵(+g𝑀)𝐴)(+g𝑀)𝐵) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝐵))) ∧ (((𝐵(+g𝑀)𝐵)(+g𝑀)𝐴) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝐴)) ∧ ((𝐵(+g𝑀)𝐵)(+g𝑀)𝐵) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝐵)))))))
1291283adant3 1132 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (∀𝑎 ∈ {𝐴, 𝐵}∀𝑏 ∈ {𝐴, 𝐵}∀𝑐 ∈ {𝐴, 𝐵} ((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐)) ↔ (((((𝐴(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐴)) ∧ ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) = (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵))) ∧ (((𝐴(+g𝑀)𝐵)(+g𝑀)𝐴) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝐴)) ∧ ((𝐴(+g𝑀)𝐵)(+g𝑀)𝐵) = (𝐴(+g𝑀)(𝐵(+g𝑀)𝐵)))) ∧ ((((𝐵(+g𝑀)𝐴)(+g𝑀)𝐴) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝐴)) ∧ ((𝐵(+g𝑀)𝐴)(+g𝑀)𝐵) = (𝐵(+g𝑀)(𝐴(+g𝑀)𝐵))) ∧ (((𝐵(+g𝑀)𝐵)(+g𝑀)𝐴) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝐴)) ∧ ((𝐵(+g𝑀)𝐵)(+g𝑀)𝐵) = (𝐵(+g𝑀)(𝐵(+g𝑀)𝐵)))))))
13039, 56, 129mpbir2and 713 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑎 ∈ {𝐴, 𝐵}∀𝑏 ∈ {𝐴, 𝐵}∀𝑐 ∈ {𝐴, 𝐵} ((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐)))
1312, 130syl 17 . 2 ((♯‘𝑆) = 2 → ∀𝑎 ∈ {𝐴, 𝐵}∀𝑏 ∈ {𝐴, 𝐵}∀𝑐 ∈ {𝐴, 𝐵} ((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐)))
1324, 1eqtr2i 2753 . . 3 {𝐴, 𝐵} = (Base‘𝑀)
133132, 8issgrp 18629 . 2 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑎 ∈ {𝐴, 𝐵}∀𝑏 ∈ {𝐴, 𝐵}∀𝑐 ∈ {𝐴, 𝐵} ((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐))))
1347, 131, 133sylanbrc 583 1 ((♯‘𝑆) = 2 → 𝑀 ∈ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  ifcif 4484  {cpr 4587  cfv 6499  (class class class)co 7369  cmpo 7371  2c2 12217  chash 14271  Basecbs 17155  +gcplusg 17196  Mgmcmgm 18547  Smgrpcsgrp 18627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-hash 14272  df-mgm 18549  df-sgrp 18628
This theorem is referenced by:  sgrp2nmnd  18839  sgrpnmndex  18841
  Copyright terms: Public domain W3C validator