![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > entrfir | Structured version Visualization version GIF version |
Description: Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 9031). (Contributed by BTernaryTau, 23-Sep-2024.) |
Ref | Expression |
---|---|
entrfir | ⊢ ((𝐶 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enfii 9218 | . . 3 ⊢ ((𝐶 ∈ Fin ∧ 𝐵 ≈ 𝐶) → 𝐵 ∈ Fin) | |
2 | 1 | 3adant2 1128 | . 2 ⊢ ((𝐶 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐵 ∈ Fin) |
3 | entrfi 9222 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | |
4 | 2, 3 | syld3an1 1407 | 1 ⊢ ((𝐶 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 ∈ wcel 2098 class class class wbr 5150 ≈ cen 8965 Fincfn 8968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-om 7875 df-1o 8491 df-en 8969 df-fin 8972 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |