Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domtrfi | Structured version Visualization version GIF version |
Description: Transitivity of dominance relation for finite sets, proved without using the Axiom of Power Sets (unlike domtr 8748). (Contributed by BTernaryTau, 17-Nov-2024.) |
Ref | Expression |
---|---|
domtrfi | ⊢ ((𝐶 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domfi 8935 | . . . 4 ⊢ ((𝐶 ∈ Fin ∧ 𝐵 ≼ 𝐶) → 𝐵 ∈ Fin) | |
2 | brdomg 8703 | . . . . 5 ⊢ (𝐵 ∈ Fin → (𝐴 ≼ 𝐵 ↔ ∃𝑔 𝑔:𝐴–1-1→𝐵)) | |
3 | 2 | biimpa 476 | . . . 4 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵) → ∃𝑔 𝑔:𝐴–1-1→𝐵) |
4 | 1, 3 | stoic3 1780 | . . 3 ⊢ ((𝐶 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≼ 𝐵) → ∃𝑔 𝑔:𝐴–1-1→𝐵) |
5 | 4 | 3com23 1124 | . 2 ⊢ ((𝐶 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → ∃𝑔 𝑔:𝐴–1-1→𝐵) |
6 | brdomg 8703 | . . . . 5 ⊢ (𝐶 ∈ Fin → (𝐵 ≼ 𝐶 ↔ ∃𝑓 𝑓:𝐵–1-1→𝐶)) | |
7 | 6 | biimpa 476 | . . . 4 ⊢ ((𝐶 ∈ Fin ∧ 𝐵 ≼ 𝐶) → ∃𝑓 𝑓:𝐵–1-1→𝐶) |
8 | 7 | 3adant2 1129 | . . 3 ⊢ ((𝐶 ∈ Fin ∧ ∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ 𝐵 ≼ 𝐶) → ∃𝑓 𝑓:𝐵–1-1→𝐶) |
9 | exdistrv 1960 | . . . . 5 ⊢ (∃𝑔∃𝑓(𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶) ↔ (∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1→𝐶)) | |
10 | 19.42vv 1962 | . . . . . 6 ⊢ (∃𝑔∃𝑓(𝐶 ∈ Fin ∧ (𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) ↔ (𝐶 ∈ Fin ∧ ∃𝑔∃𝑓(𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶))) | |
11 | f1co 6666 | . . . . . . . . 9 ⊢ ((𝑓:𝐵–1-1→𝐶 ∧ 𝑔:𝐴–1-1→𝐵) → (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) | |
12 | 11 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶) → (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) |
13 | f1domfi 8928 | . . . . . . . 8 ⊢ ((𝐶 ∈ Fin ∧ (𝑓 ∘ 𝑔):𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) | |
14 | 12, 13 | sylan2 592 | . . . . . . 7 ⊢ ((𝐶 ∈ Fin ∧ (𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) |
15 | 14 | exlimivv 1936 | . . . . . 6 ⊢ (∃𝑔∃𝑓(𝐶 ∈ Fin ∧ (𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) |
16 | 10, 15 | sylbir 234 | . . . . 5 ⊢ ((𝐶 ∈ Fin ∧ ∃𝑔∃𝑓(𝑔:𝐴–1-1→𝐵 ∧ 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) |
17 | 9, 16 | sylan2br 594 | . . . 4 ⊢ ((𝐶 ∈ Fin ∧ (∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1→𝐶)) → 𝐴 ≼ 𝐶) |
18 | 17 | 3impb 1113 | . . 3 ⊢ ((𝐶 ∈ Fin ∧ ∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ ∃𝑓 𝑓:𝐵–1-1→𝐶) → 𝐴 ≼ 𝐶) |
19 | 8, 18 | syld3an3 1407 | . 2 ⊢ ((𝐶 ∈ Fin ∧ ∃𝑔 𝑔:𝐴–1-1→𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
20 | 5, 19 | syld3an2 1409 | 1 ⊢ ((𝐶 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∃wex 1783 ∈ wcel 2108 class class class wbr 5070 ∘ ccom 5584 –1-1→wf1 6415 ≼ cdom 8689 Fincfn 8691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-en 8692 df-dom 8693 df-fin 8695 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |