MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dom2g Structured version   Visualization version   GIF version

Theorem f1dom2g 8790
Description: The domain of a one-to-one function is dominated by its codomain. This variation of f1domg 8793 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.) (Proof shortened by BTernaryTau, 25-Sep-2024.)
Assertion
Ref Expression
f1dom2g ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐴𝐵)

Proof of Theorem f1dom2g
StepHypRef Expression
1 f1f 6700 . . . 4 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 fex2 7812 . . . 4 ((𝐹:𝐴𝐵𝐴𝑉𝐵𝑊) → 𝐹 ∈ V)
31, 2syl3an1 1163 . . 3 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → 𝐹 ∈ V)
433coml 1127 . 2 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐹 ∈ V)
5 f1dom3g 8788 . 2 ((𝐹 ∈ V ∧ 𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐴𝐵)
64, 5syld3an1 1410 1 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087  wcel 2104  Vcvv 3437   class class class wbr 5081  wf 6454  1-1wf1 6455  cdom 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-dom 8766
This theorem is referenced by:  ssdomg  8821  domdifsn  8879  sucdom2OLD  8907  unxpdomlem3  9073  unbnn  9114  fodomacn  9858  hauspwpwdom  23184
  Copyright terms: Public domain W3C validator