MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dom2g Structured version   Visualization version   GIF version

Theorem f1dom2g 9029
Description: The domain of a one-to-one function is dominated by its codomain. This variation of f1domg 9032 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.) (Proof shortened by BTernaryTau, 25-Sep-2024.)
Assertion
Ref Expression
f1dom2g ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐴𝐵)

Proof of Theorem f1dom2g
StepHypRef Expression
1 f1f 6817 . . . 4 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 fex2 7974 . . . 4 ((𝐹:𝐴𝐵𝐴𝑉𝐵𝑊) → 𝐹 ∈ V)
31, 2syl3an1 1163 . . 3 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → 𝐹 ∈ V)
433coml 1127 . 2 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐹 ∈ V)
5 f1dom3g 9027 . 2 ((𝐹 ∈ V ∧ 𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐴𝐵)
64, 5syld3an1 1410 1 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087  wcel 2108  Vcvv 3488   class class class wbr 5166  wf 6569  1-1wf1 6570  cdom 9001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-dom 9005
This theorem is referenced by:  ssdomg  9060  domdifsn  9120  sucdom2OLD  9148  unxpdomlem3  9315  unbnn  9360  fodomacn  10125  hauspwpwdom  24017
  Copyright terms: Public domain W3C validator