MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dom2g Structured version   Visualization version   GIF version

Theorem f1dom2g 8996
Description: The domain of a one-to-one function is dominated by its codomain. This variation of f1domg 8999 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.) (Proof shortened by BTernaryTau, 25-Sep-2024.)
Assertion
Ref Expression
f1dom2g ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐴𝐵)

Proof of Theorem f1dom2g
StepHypRef Expression
1 f1f 6798 . . . 4 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 fex2 7947 . . . 4 ((𝐹:𝐴𝐵𝐴𝑉𝐵𝑊) → 𝐹 ∈ V)
31, 2syl3an1 1160 . . 3 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → 𝐹 ∈ V)
433coml 1124 . 2 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐹 ∈ V)
5 f1dom3g 8994 . 2 ((𝐹 ∈ V ∧ 𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐴𝐵)
64, 5syld3an1 1407 1 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084  wcel 2098  Vcvv 3473   class class class wbr 5152  wf 6549  1-1wf1 6550  cdom 8968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-dom 8972
This theorem is referenced by:  ssdomg  9027  domdifsn  9085  sucdom2OLD  9113  unxpdomlem3  9283  unbnn  9330  fodomacn  10087  hauspwpwdom  23912
  Copyright terms: Public domain W3C validator