MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findcard3 Structured version   Visualization version   GIF version

Theorem findcard3 9315
Description: Schema for strong induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on any proper subset. The result is then proven to be true for all finite sets. (Contributed by Mario Carneiro, 13-Dec-2013.) Avoid ax-pow 5370. (Revised by BTernaryTau, 7-Jan-2025.)
Hypotheses
Ref Expression
findcard3.1 (𝑥 = 𝑦 → (𝜑𝜒))
findcard3.2 (𝑥 = 𝐴 → (𝜑𝜏))
findcard3.3 (𝑦 ∈ Fin → (∀𝑥(𝑥𝑦𝜑) → 𝜒))
Assertion
Ref Expression
findcard3 (𝐴 ∈ Fin → 𝜏)
Distinct variable groups:   𝜒,𝑥   𝜏,𝑥   𝑥,𝑦   𝑥,𝐴   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜒(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem findcard3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 9014 . . 3 (𝐴 ∈ Fin ↔ ∃𝑤 ∈ ω 𝐴𝑤)
2 nnon 7892 . . . . . 6 (𝑤 ∈ ω → 𝑤 ∈ On)
3 eleq1w 2821 . . . . . . . 8 (𝑤 = 𝑧 → (𝑤 ∈ ω ↔ 𝑧 ∈ ω))
4 breq2 5151 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑥𝑤𝑥𝑧))
54imbi1d 341 . . . . . . . . 9 (𝑤 = 𝑧 → ((𝑥𝑤𝜑) ↔ (𝑥𝑧𝜑)))
65albidv 1917 . . . . . . . 8 (𝑤 = 𝑧 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥𝑧𝜑)))
73, 6imbi12d 344 . . . . . . 7 (𝑤 = 𝑧 → ((𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑)) ↔ (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑))))
8 rspe 3246 . . . . . . . . . . . . . 14 ((𝑤 ∈ ω ∧ 𝑦𝑤) → ∃𝑤 ∈ ω 𝑦𝑤)
9 isfi 9014 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑦𝑤)
108, 9sylibr 234 . . . . . . . . . . . . 13 ((𝑤 ∈ ω ∧ 𝑦𝑤) → 𝑦 ∈ Fin)
11 19.21v 1936 . . . . . . . . . . . . . . . 16 (∀𝑥(𝑧 ∈ ω → (𝑥𝑧𝜑)) ↔ (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)))
1211ralbii 3090 . . . . . . . . . . . . . . 15 (∀𝑧𝑤𝑥(𝑧 ∈ ω → (𝑥𝑧𝜑)) ↔ ∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)))
13 ralcom4 3283 . . . . . . . . . . . . . . 15 (∀𝑧𝑤𝑥(𝑧 ∈ ω → (𝑥𝑧𝜑)) ↔ ∀𝑥𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)))
1412, 13bitr3i 277 . . . . . . . . . . . . . 14 (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) ↔ ∀𝑥𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)))
15 pssss 4107 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑦𝑥𝑦)
16 ssfi 9211 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ Fin ∧ 𝑥𝑦) → 𝑥 ∈ Fin)
17 isfi 9014 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ Fin ↔ ∃𝑧 ∈ ω 𝑥𝑧)
1816, 17sylib 218 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ Fin ∧ 𝑥𝑦) → ∃𝑧 ∈ ω 𝑥𝑧)
1910, 15, 18syl2an 596 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → ∃𝑧 ∈ ω 𝑥𝑧)
20 simprl 771 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑧 ∈ ω)
21 nnfi 9205 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ ω → 𝑧 ∈ Fin)
22 ensymfib 9221 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ Fin → (𝑧𝑥𝑥𝑧))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ ω → (𝑧𝑥𝑥𝑧))
2423biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ω ∧ 𝑥𝑧) → 𝑧𝑥)
2524adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑧𝑥)
26 simplll 775 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑤 ∈ ω)
27 php3 9246 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 ∈ Fin ∧ 𝑥𝑦) → 𝑥𝑦)
2810, 27sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → 𝑥𝑦)
2928adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑥𝑦)
30 simpllr 776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑦𝑤)
31 endom 9017 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝑤𝑦𝑤)
32 nnfi 9205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 ∈ ω → 𝑤 ∈ Fin)
33 domfi 9226 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑤 ∈ Fin ∧ 𝑦𝑤) → 𝑦 ∈ Fin)
3432, 33sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑤 ∈ ω ∧ 𝑦𝑤) → 𝑦 ∈ Fin)
35343adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑤 ∈ ω ∧ 𝑥𝑦𝑦𝑤) → 𝑦 ∈ Fin)
36 sdomdom 9018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥𝑦𝑥𝑦)
37 domfi 9226 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑦 ∈ Fin ∧ 𝑥𝑦) → 𝑥 ∈ Fin)
3836, 37sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑦 ∈ Fin ∧ 𝑥𝑦) → 𝑥 ∈ Fin)
39383adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑦 ∈ Fin ∧ 𝑥𝑦𝑦𝑤) → 𝑥 ∈ Fin)
4035, 39syld3an1 1409 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑤 ∈ ω ∧ 𝑥𝑦𝑦𝑤) → 𝑥 ∈ Fin)
41 sdomdomtrfi 9238 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ Fin ∧ 𝑥𝑦𝑦𝑤) → 𝑥𝑤)
4240, 41syld3an1 1409 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑤 ∈ ω ∧ 𝑥𝑦𝑦𝑤) → 𝑥𝑤)
4331, 42syl3an3 1164 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑤 ∈ ω ∧ 𝑥𝑦𝑦𝑤) → 𝑥𝑤)
4426, 29, 30, 43syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑥𝑤)
45 endom 9017 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧𝑥𝑧𝑥)
46 domsdomtrfi 9239 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ Fin ∧ 𝑧𝑥𝑥𝑤) → 𝑧𝑤)
4721, 46syl3an1 1162 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ω ∧ 𝑧𝑥𝑥𝑤) → 𝑧𝑤)
4845, 47syl3an2 1163 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ω ∧ 𝑧𝑥𝑥𝑤) → 𝑧𝑤)
4920, 25, 44, 48syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑧𝑤)
50 nnsdomo 9267 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ω ∧ 𝑤 ∈ ω) → (𝑧𝑤𝑧𝑤))
51 nnord 7894 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ ω → Ord 𝑧)
52 nnord 7894 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ ω → Ord 𝑤)
53 ordelpss 6413 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Ord 𝑧 ∧ Ord 𝑤) → (𝑧𝑤𝑧𝑤))
5451, 52, 53syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ω ∧ 𝑤 ∈ ω) → (𝑧𝑤𝑧𝑤))
5550, 54bitr4d 282 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ω ∧ 𝑤 ∈ ω) → (𝑧𝑤𝑧𝑤))
5620, 26, 55syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → (𝑧𝑤𝑧𝑤))
5749, 56mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑧𝑤)
5857ex 412 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → ((𝑧 ∈ ω ∧ 𝑥𝑧) → 𝑧𝑤))
59 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ω ∧ 𝑥𝑧) → 𝑥𝑧)
6058, 59jca2 513 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → ((𝑧 ∈ ω ∧ 𝑥𝑧) → (𝑧𝑤𝑥𝑧)))
6160reximdv2 3161 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (∃𝑧 ∈ ω 𝑥𝑧 → ∃𝑧𝑤 𝑥𝑧))
6219, 61mpd 15 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → ∃𝑧𝑤 𝑥𝑧)
63 r19.29 3111 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ ∃𝑧𝑤 𝑥𝑧) → ∃𝑧𝑤 ((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧))
6463expcom 413 . . . . . . . . . . . . . . . . . . 19 (∃𝑧𝑤 𝑥𝑧 → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → ∃𝑧𝑤 ((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧)))
6562, 64syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → ∃𝑧𝑤 ((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧)))
66 ordom 7896 . . . . . . . . . . . . . . . . . . . . . . 23 Ord ω
67 ordelss 6401 . . . . . . . . . . . . . . . . . . . . . . 23 ((Ord ω ∧ 𝑤 ∈ ω) → 𝑤 ⊆ ω)
6866, 67mpan 690 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ω → 𝑤 ⊆ ω)
6968ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → 𝑤 ⊆ ω)
7069sseld 3993 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (𝑧𝑤𝑧 ∈ ω))
71 pm2.27 42 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ω → ((𝑧 ∈ ω → (𝑥𝑧𝜑)) → (𝑥𝑧𝜑)))
7271impd 410 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ω → (((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧) → 𝜑))
7370, 72syl6 35 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (𝑧𝑤 → (((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧) → 𝜑)))
7473rexlimdv 3150 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (∃𝑧𝑤 ((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧) → 𝜑))
7565, 74syld 47 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → 𝜑))
7675ex 412 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (𝑥𝑦 → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → 𝜑)))
7776com23 86 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → (𝑥𝑦𝜑)))
7877alimdv 1913 . . . . . . . . . . . . . 14 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (∀𝑥𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → ∀𝑥(𝑥𝑦𝜑)))
7914, 78biimtrid 242 . . . . . . . . . . . . 13 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → ∀𝑥(𝑥𝑦𝜑)))
80 findcard3.3 . . . . . . . . . . . . 13 (𝑦 ∈ Fin → (∀𝑥(𝑥𝑦𝜑) → 𝜒))
8110, 79, 80sylsyld 61 . . . . . . . . . . . 12 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → 𝜒))
8281impancom 451 . . . . . . . . . . 11 ((𝑤 ∈ ω ∧ ∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑))) → (𝑦𝑤𝜒))
8382alrimiv 1924 . . . . . . . . . 10 ((𝑤 ∈ ω ∧ ∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑))) → ∀𝑦(𝑦𝑤𝜒))
8483expcom 413 . . . . . . . . 9 (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → (𝑤 ∈ ω → ∀𝑦(𝑦𝑤𝜒)))
85 breq1 5150 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝑤𝑦𝑤))
86 findcard3.1 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝜑𝜒))
8785, 86imbi12d 344 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥𝑤𝜑) ↔ (𝑦𝑤𝜒)))
8887cbvalvw 2032 . . . . . . . . 9 (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑦(𝑦𝑤𝜒))
8984, 88imbitrrdi 252 . . . . . . . 8 (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑)))
9089a1i 11 . . . . . . 7 (𝑤 ∈ On → (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑))))
917, 90tfis2 7877 . . . . . 6 (𝑤 ∈ On → (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑)))
922, 91mpcom 38 . . . . 5 (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑))
9392rgen 3060 . . . 4 𝑤 ∈ ω ∀𝑥(𝑥𝑤𝜑)
94 r19.29 3111 . . . 4 ((∀𝑤 ∈ ω ∀𝑥(𝑥𝑤𝜑) ∧ ∃𝑤 ∈ ω 𝐴𝑤) → ∃𝑤 ∈ ω (∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤))
9593, 94mpan 690 . . 3 (∃𝑤 ∈ ω 𝐴𝑤 → ∃𝑤 ∈ ω (∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤))
961, 95sylbi 217 . 2 (𝐴 ∈ Fin → ∃𝑤 ∈ ω (∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤))
97 breq1 5150 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑤𝐴𝑤))
98 findcard3.2 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜏))
9997, 98imbi12d 344 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑤𝜑) ↔ (𝐴𝑤𝜏)))
10099spcgv 3595 . . . 4 (𝐴 ∈ Fin → (∀𝑥(𝑥𝑤𝜑) → (𝐴𝑤𝜏)))
101100impd 410 . . 3 (𝐴 ∈ Fin → ((∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤) → 𝜏))
102101rexlimdvw 3157 . 2 (𝐴 ∈ Fin → (∃𝑤 ∈ ω (∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤) → 𝜏))
10396, 102mpd 15 1 (𝐴 ∈ Fin → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1534   = wceq 1536  wcel 2105  wral 3058  wrex 3067  wss 3962  wpss 3963   class class class wbr 5147  Ord word 6384  Oncon0 6385  ωcom 7886  cen 8980  cdom 8981  csdm 8982  Fincfn 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-om 7887  df-1o 8504  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987
This theorem is referenced by:  marypha1lem  9470  pgpfac1  20114  pgpfac  20118  fbfinnfr  23864  wilthlem3  27127
  Copyright terms: Public domain W3C validator