MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findcard3 Structured version   Visualization version   GIF version

Theorem findcard3 8436
Description: Schema for strong induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on any proper subset. The result is then proven to be true for all finite sets. (Contributed by Mario Carneiro, 13-Dec-2013.)
Hypotheses
Ref Expression
findcard3.1 (𝑥 = 𝑦 → (𝜑𝜒))
findcard3.2 (𝑥 = 𝐴 → (𝜑𝜏))
findcard3.3 (𝑦 ∈ Fin → (∀𝑥(𝑥𝑦𝜑) → 𝜒))
Assertion
Ref Expression
findcard3 (𝐴 ∈ Fin → 𝜏)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝑥,𝐴   𝜏,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜒(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem findcard3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 8210 . . 3 (𝐴 ∈ Fin ↔ ∃𝑤 ∈ ω 𝐴𝑤)
2 nnon 7295 . . . . . 6 (𝑤 ∈ ω → 𝑤 ∈ On)
3 eleq1w 2864 . . . . . . . 8 (𝑤 = 𝑧 → (𝑤 ∈ ω ↔ 𝑧 ∈ ω))
4 breq2 4841 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑥𝑤𝑥𝑧))
54imbi1d 332 . . . . . . . . 9 (𝑤 = 𝑧 → ((𝑥𝑤𝜑) ↔ (𝑥𝑧𝜑)))
65albidv 2011 . . . . . . . 8 (𝑤 = 𝑧 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥𝑧𝜑)))
73, 6imbi12d 335 . . . . . . 7 (𝑤 = 𝑧 → ((𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑)) ↔ (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑))))
8 rspe 3186 . . . . . . . . . . . . . 14 ((𝑤 ∈ ω ∧ 𝑦𝑤) → ∃𝑤 ∈ ω 𝑦𝑤)
9 isfi 8210 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑦𝑤)
108, 9sylibr 225 . . . . . . . . . . . . 13 ((𝑤 ∈ ω ∧ 𝑦𝑤) → 𝑦 ∈ Fin)
11 19.21v 2030 . . . . . . . . . . . . . . . 16 (∀𝑥(𝑧 ∈ ω → (𝑥𝑧𝜑)) ↔ (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)))
1211ralbii 3164 . . . . . . . . . . . . . . 15 (∀𝑧𝑤𝑥(𝑧 ∈ ω → (𝑥𝑧𝜑)) ↔ ∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)))
13 ralcom4 3414 . . . . . . . . . . . . . . 15 (∀𝑧𝑤𝑥(𝑧 ∈ ω → (𝑥𝑧𝜑)) ↔ ∀𝑥𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)))
1412, 13bitr3i 268 . . . . . . . . . . . . . 14 (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) ↔ ∀𝑥𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)))
15 pssss 3894 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑦𝑥𝑦)
16 ssfi 8413 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ Fin ∧ 𝑥𝑦) → 𝑥 ∈ Fin)
17 isfi 8210 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ Fin ↔ ∃𝑧 ∈ ω 𝑥𝑧)
1816, 17sylib 209 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ Fin ∧ 𝑥𝑦) → ∃𝑧 ∈ ω 𝑥𝑧)
1910, 15, 18syl2an 585 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → ∃𝑧 ∈ ω 𝑥𝑧)
20 ensym 8235 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝑧𝑧𝑥)
2120ad2antll 711 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑧𝑥)
22 php3 8379 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 ∈ Fin ∧ 𝑥𝑦) → 𝑥𝑦)
2310, 22sylan 571 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → 𝑥𝑦)
2423adantr 468 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑥𝑦)
25 simpllr 784 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑦𝑤)
26 sdomentr 8327 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥𝑦𝑦𝑤) → 𝑥𝑤)
2724, 25, 26syl2anc 575 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑥𝑤)
28 ensdomtr 8329 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧𝑥𝑥𝑤) → 𝑧𝑤)
2921, 27, 28syl2anc 575 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑧𝑤)
30 nnon 7295 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ ω → 𝑧 ∈ On)
3130ad2antrl 710 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑧 ∈ On)
322ad3antrrr 712 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑤 ∈ On)
33 sdomel 8340 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤𝑧𝑤))
3431, 32, 33syl2anc 575 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → (𝑧𝑤𝑧𝑤))
3529, 34mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑧𝑤)
3635ex 399 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → ((𝑧 ∈ ω ∧ 𝑥𝑧) → 𝑧𝑤))
37 simpr 473 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ω ∧ 𝑥𝑧) → 𝑥𝑧)
3837a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → ((𝑧 ∈ ω ∧ 𝑥𝑧) → 𝑥𝑧))
3936, 38jcad 504 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → ((𝑧 ∈ ω ∧ 𝑥𝑧) → (𝑧𝑤𝑥𝑧)))
4039reximdv2 3197 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (∃𝑧 ∈ ω 𝑥𝑧 → ∃𝑧𝑤 𝑥𝑧))
4119, 40mpd 15 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → ∃𝑧𝑤 𝑥𝑧)
42 r19.29 3256 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ ∃𝑧𝑤 𝑥𝑧) → ∃𝑧𝑤 ((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧))
4342expcom 400 . . . . . . . . . . . . . . . . . . 19 (∃𝑧𝑤 𝑥𝑧 → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → ∃𝑧𝑤 ((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧)))
4441, 43syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → ∃𝑧𝑤 ((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧)))
45 ordom 7298 . . . . . . . . . . . . . . . . . . . . . . 23 Ord ω
46 ordelss 5946 . . . . . . . . . . . . . . . . . . . . . . 23 ((Ord ω ∧ 𝑤 ∈ ω) → 𝑤 ⊆ ω)
4745, 46mpan 673 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ω → 𝑤 ⊆ ω)
4847ad2antrr 708 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → 𝑤 ⊆ ω)
4948sseld 3791 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (𝑧𝑤𝑧 ∈ ω))
50 pm2.27 42 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ω → ((𝑧 ∈ ω → (𝑥𝑧𝜑)) → (𝑥𝑧𝜑)))
5150impd 398 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ω → (((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧) → 𝜑))
5249, 51syl6 35 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (𝑧𝑤 → (((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧) → 𝜑)))
5352rexlimdv 3214 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (∃𝑧𝑤 ((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧) → 𝜑))
5444, 53syld 47 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → 𝜑))
5554ex 399 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (𝑥𝑦 → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → 𝜑)))
5655com23 86 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → (𝑥𝑦𝜑)))
5756alimdv 2007 . . . . . . . . . . . . . 14 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (∀𝑥𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → ∀𝑥(𝑥𝑦𝜑)))
5814, 57syl5bi 233 . . . . . . . . . . . . 13 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → ∀𝑥(𝑥𝑦𝜑)))
59 findcard3.3 . . . . . . . . . . . . 13 (𝑦 ∈ Fin → (∀𝑥(𝑥𝑦𝜑) → 𝜒))
6010, 58, 59sylsyld 61 . . . . . . . . . . . 12 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → 𝜒))
6160impancom 441 . . . . . . . . . . 11 ((𝑤 ∈ ω ∧ ∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑))) → (𝑦𝑤𝜒))
6261alrimiv 2017 . . . . . . . . . 10 ((𝑤 ∈ ω ∧ ∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑))) → ∀𝑦(𝑦𝑤𝜒))
6362expcom 400 . . . . . . . . 9 (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → (𝑤 ∈ ω → ∀𝑦(𝑦𝑤𝜒)))
64 breq1 4840 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝑤𝑦𝑤))
65 findcard3.1 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝜑𝜒))
6664, 65imbi12d 335 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥𝑤𝜑) ↔ (𝑦𝑤𝜒)))
6766cbvalvw 2135 . . . . . . . . 9 (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑦(𝑦𝑤𝜒))
6863, 67syl6ibr 243 . . . . . . . 8 (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑)))
6968a1i 11 . . . . . . 7 (𝑤 ∈ On → (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑))))
707, 69tfis2 7280 . . . . . 6 (𝑤 ∈ On → (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑)))
712, 70mpcom 38 . . . . 5 (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑))
7271rgen 3106 . . . 4 𝑤 ∈ ω ∀𝑥(𝑥𝑤𝜑)
73 r19.29 3256 . . . 4 ((∀𝑤 ∈ ω ∀𝑥(𝑥𝑤𝜑) ∧ ∃𝑤 ∈ ω 𝐴𝑤) → ∃𝑤 ∈ ω (∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤))
7472, 73mpan 673 . . 3 (∃𝑤 ∈ ω 𝐴𝑤 → ∃𝑤 ∈ ω (∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤))
751, 74sylbi 208 . 2 (𝐴 ∈ Fin → ∃𝑤 ∈ ω (∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤))
76 breq1 4840 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑤𝐴𝑤))
77 findcard3.2 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜏))
7876, 77imbi12d 335 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑤𝜑) ↔ (𝐴𝑤𝜏)))
7978spcgv 3482 . . . 4 (𝐴 ∈ Fin → (∀𝑥(𝑥𝑤𝜑) → (𝐴𝑤𝜏)))
8079impd 398 . . 3 (𝐴 ∈ Fin → ((∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤) → 𝜏))
8180rexlimdvw 3218 . 2 (𝐴 ∈ Fin → (∃𝑤 ∈ ω (∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤) → 𝜏))
8275, 81mpd 15 1 (𝐴 ∈ Fin → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wal 1635   = wceq 1637  wcel 2155  wral 3092  wrex 3093  wss 3763  wpss 3764   class class class wbr 4837  Ord word 5929  Oncon0 5930  ωcom 7289  cen 8183  csdm 8185  Fincfn 8186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-ral 3097  df-rex 3098  df-rab 3101  df-v 3389  df-sbc 3628  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-pss 3779  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-tp 4369  df-op 4371  df-uni 4624  df-br 4838  df-opab 4900  df-tr 4940  df-id 5213  df-eprel 5218  df-po 5226  df-so 5227  df-fr 5264  df-we 5266  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-ord 5933  df-on 5934  df-lim 5935  df-suc 5936  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-om 7290  df-er 7973  df-en 8187  df-dom 8188  df-sdom 8189  df-fin 8190
This theorem is referenced by:  marypha1lem  8572  pgpfac1  18675  pgpfac  18679  fbfinnfr  21852  wilthlem3  25004
  Copyright terms: Public domain W3C validator