MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findcard3 Structured version   Visualization version   GIF version

Theorem findcard3 9287
Description: Schema for strong induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on any proper subset. The result is then proven to be true for all finite sets. (Contributed by Mario Carneiro, 13-Dec-2013.) Avoid ax-pow 5362. (Revised by BTernaryTau, 7-Jan-2025.)
Hypotheses
Ref Expression
findcard3.1 (𝑥 = 𝑦 → (𝜑𝜒))
findcard3.2 (𝑥 = 𝐴 → (𝜑𝜏))
findcard3.3 (𝑦 ∈ Fin → (∀𝑥(𝑥𝑦𝜑) → 𝜒))
Assertion
Ref Expression
findcard3 (𝐴 ∈ Fin → 𝜏)
Distinct variable groups:   𝜒,𝑥   𝜏,𝑥   𝑥,𝑦   𝑥,𝐴   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜒(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem findcard3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 8974 . . 3 (𝐴 ∈ Fin ↔ ∃𝑤 ∈ ω 𝐴𝑤)
2 nnon 7863 . . . . . 6 (𝑤 ∈ ω → 𝑤 ∈ On)
3 eleq1w 2814 . . . . . . . 8 (𝑤 = 𝑧 → (𝑤 ∈ ω ↔ 𝑧 ∈ ω))
4 breq2 5151 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑥𝑤𝑥𝑧))
54imbi1d 340 . . . . . . . . 9 (𝑤 = 𝑧 → ((𝑥𝑤𝜑) ↔ (𝑥𝑧𝜑)))
65albidv 1921 . . . . . . . 8 (𝑤 = 𝑧 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥𝑧𝜑)))
73, 6imbi12d 343 . . . . . . 7 (𝑤 = 𝑧 → ((𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑)) ↔ (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑))))
8 rspe 3244 . . . . . . . . . . . . . 14 ((𝑤 ∈ ω ∧ 𝑦𝑤) → ∃𝑤 ∈ ω 𝑦𝑤)
9 isfi 8974 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑦𝑤)
108, 9sylibr 233 . . . . . . . . . . . . 13 ((𝑤 ∈ ω ∧ 𝑦𝑤) → 𝑦 ∈ Fin)
11 19.21v 1940 . . . . . . . . . . . . . . . 16 (∀𝑥(𝑧 ∈ ω → (𝑥𝑧𝜑)) ↔ (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)))
1211ralbii 3091 . . . . . . . . . . . . . . 15 (∀𝑧𝑤𝑥(𝑧 ∈ ω → (𝑥𝑧𝜑)) ↔ ∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)))
13 ralcom4 3281 . . . . . . . . . . . . . . 15 (∀𝑧𝑤𝑥(𝑧 ∈ ω → (𝑥𝑧𝜑)) ↔ ∀𝑥𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)))
1412, 13bitr3i 276 . . . . . . . . . . . . . 14 (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) ↔ ∀𝑥𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)))
15 pssss 4094 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑦𝑥𝑦)
16 ssfi 9175 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ Fin ∧ 𝑥𝑦) → 𝑥 ∈ Fin)
17 isfi 8974 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ Fin ↔ ∃𝑧 ∈ ω 𝑥𝑧)
1816, 17sylib 217 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ Fin ∧ 𝑥𝑦) → ∃𝑧 ∈ ω 𝑥𝑧)
1910, 15, 18syl2an 594 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → ∃𝑧 ∈ ω 𝑥𝑧)
20 simprl 767 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑧 ∈ ω)
21 nnfi 9169 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ ω → 𝑧 ∈ Fin)
22 ensymfib 9189 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ Fin → (𝑧𝑥𝑥𝑧))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ ω → (𝑧𝑥𝑥𝑧))
2423biimpar 476 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ω ∧ 𝑥𝑧) → 𝑧𝑥)
2524adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑧𝑥)
26 simplll 771 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑤 ∈ ω)
27 php3 9214 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 ∈ Fin ∧ 𝑥𝑦) → 𝑥𝑦)
2810, 27sylan 578 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → 𝑥𝑦)
2928adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑥𝑦)
30 simpllr 772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑦𝑤)
31 endom 8977 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝑤𝑦𝑤)
32 nnfi 9169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 ∈ ω → 𝑤 ∈ Fin)
33 domfi 9194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑤 ∈ Fin ∧ 𝑦𝑤) → 𝑦 ∈ Fin)
3432, 33sylan 578 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑤 ∈ ω ∧ 𝑦𝑤) → 𝑦 ∈ Fin)
35343adant2 1129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑤 ∈ ω ∧ 𝑥𝑦𝑦𝑤) → 𝑦 ∈ Fin)
36 sdomdom 8978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥𝑦𝑥𝑦)
37 domfi 9194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑦 ∈ Fin ∧ 𝑥𝑦) → 𝑥 ∈ Fin)
3836, 37sylan2 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑦 ∈ Fin ∧ 𝑥𝑦) → 𝑥 ∈ Fin)
39383adant3 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑦 ∈ Fin ∧ 𝑥𝑦𝑦𝑤) → 𝑥 ∈ Fin)
4035, 39syld3an1 1408 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑤 ∈ ω ∧ 𝑥𝑦𝑦𝑤) → 𝑥 ∈ Fin)
41 sdomdomtrfi 9206 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ Fin ∧ 𝑥𝑦𝑦𝑤) → 𝑥𝑤)
4240, 41syld3an1 1408 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑤 ∈ ω ∧ 𝑥𝑦𝑦𝑤) → 𝑥𝑤)
4331, 42syl3an3 1163 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑤 ∈ ω ∧ 𝑥𝑦𝑦𝑤) → 𝑥𝑤)
4426, 29, 30, 43syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑥𝑤)
45 endom 8977 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧𝑥𝑧𝑥)
46 domsdomtrfi 9207 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ Fin ∧ 𝑧𝑥𝑥𝑤) → 𝑧𝑤)
4721, 46syl3an1 1161 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ω ∧ 𝑧𝑥𝑥𝑤) → 𝑧𝑤)
4845, 47syl3an2 1162 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ω ∧ 𝑧𝑥𝑥𝑤) → 𝑧𝑤)
4920, 25, 44, 48syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑧𝑤)
50 nnsdomo 9236 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ω ∧ 𝑤 ∈ ω) → (𝑧𝑤𝑧𝑤))
51 nnord 7865 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ ω → Ord 𝑧)
52 nnord 7865 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ ω → Ord 𝑤)
53 ordelpss 6391 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Ord 𝑧 ∧ Ord 𝑤) → (𝑧𝑤𝑧𝑤))
5451, 52, 53syl2an 594 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ω ∧ 𝑤 ∈ ω) → (𝑧𝑤𝑧𝑤))
5550, 54bitr4d 281 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ω ∧ 𝑤 ∈ ω) → (𝑧𝑤𝑧𝑤))
5620, 26, 55syl2anc 582 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → (𝑧𝑤𝑧𝑤))
5749, 56mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑧𝑤)
5857ex 411 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → ((𝑧 ∈ ω ∧ 𝑥𝑧) → 𝑧𝑤))
59 simpr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ω ∧ 𝑥𝑧) → 𝑥𝑧)
6058, 59jca2 512 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → ((𝑧 ∈ ω ∧ 𝑥𝑧) → (𝑧𝑤𝑥𝑧)))
6160reximdv2 3162 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (∃𝑧 ∈ ω 𝑥𝑧 → ∃𝑧𝑤 𝑥𝑧))
6219, 61mpd 15 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → ∃𝑧𝑤 𝑥𝑧)
63 r19.29 3112 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ ∃𝑧𝑤 𝑥𝑧) → ∃𝑧𝑤 ((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧))
6463expcom 412 . . . . . . . . . . . . . . . . . . 19 (∃𝑧𝑤 𝑥𝑧 → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → ∃𝑧𝑤 ((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧)))
6562, 64syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → ∃𝑧𝑤 ((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧)))
66 ordom 7867 . . . . . . . . . . . . . . . . . . . . . . 23 Ord ω
67 ordelss 6379 . . . . . . . . . . . . . . . . . . . . . . 23 ((Ord ω ∧ 𝑤 ∈ ω) → 𝑤 ⊆ ω)
6866, 67mpan 686 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ω → 𝑤 ⊆ ω)
6968ad2antrr 722 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → 𝑤 ⊆ ω)
7069sseld 3980 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (𝑧𝑤𝑧 ∈ ω))
71 pm2.27 42 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ω → ((𝑧 ∈ ω → (𝑥𝑧𝜑)) → (𝑥𝑧𝜑)))
7271impd 409 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ω → (((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧) → 𝜑))
7370, 72syl6 35 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (𝑧𝑤 → (((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧) → 𝜑)))
7473rexlimdv 3151 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (∃𝑧𝑤 ((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧) → 𝜑))
7565, 74syld 47 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → 𝜑))
7675ex 411 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (𝑥𝑦 → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → 𝜑)))
7776com23 86 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → (𝑥𝑦𝜑)))
7877alimdv 1917 . . . . . . . . . . . . . 14 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (∀𝑥𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → ∀𝑥(𝑥𝑦𝜑)))
7914, 78biimtrid 241 . . . . . . . . . . . . 13 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → ∀𝑥(𝑥𝑦𝜑)))
80 findcard3.3 . . . . . . . . . . . . 13 (𝑦 ∈ Fin → (∀𝑥(𝑥𝑦𝜑) → 𝜒))
8110, 79, 80sylsyld 61 . . . . . . . . . . . 12 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → 𝜒))
8281impancom 450 . . . . . . . . . . 11 ((𝑤 ∈ ω ∧ ∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑))) → (𝑦𝑤𝜒))
8382alrimiv 1928 . . . . . . . . . 10 ((𝑤 ∈ ω ∧ ∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑))) → ∀𝑦(𝑦𝑤𝜒))
8483expcom 412 . . . . . . . . 9 (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → (𝑤 ∈ ω → ∀𝑦(𝑦𝑤𝜒)))
85 breq1 5150 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝑤𝑦𝑤))
86 findcard3.1 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝜑𝜒))
8785, 86imbi12d 343 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥𝑤𝜑) ↔ (𝑦𝑤𝜒)))
8887cbvalvw 2037 . . . . . . . . 9 (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑦(𝑦𝑤𝜒))
8984, 88imbitrrdi 251 . . . . . . . 8 (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑)))
9089a1i 11 . . . . . . 7 (𝑤 ∈ On → (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑))))
917, 90tfis2 7848 . . . . . 6 (𝑤 ∈ On → (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑)))
922, 91mpcom 38 . . . . 5 (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑))
9392rgen 3061 . . . 4 𝑤 ∈ ω ∀𝑥(𝑥𝑤𝜑)
94 r19.29 3112 . . . 4 ((∀𝑤 ∈ ω ∀𝑥(𝑥𝑤𝜑) ∧ ∃𝑤 ∈ ω 𝐴𝑤) → ∃𝑤 ∈ ω (∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤))
9593, 94mpan 686 . . 3 (∃𝑤 ∈ ω 𝐴𝑤 → ∃𝑤 ∈ ω (∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤))
961, 95sylbi 216 . 2 (𝐴 ∈ Fin → ∃𝑤 ∈ ω (∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤))
97 breq1 5150 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑤𝐴𝑤))
98 findcard3.2 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜏))
9997, 98imbi12d 343 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑤𝜑) ↔ (𝐴𝑤𝜏)))
10099spcgv 3585 . . . 4 (𝐴 ∈ Fin → (∀𝑥(𝑥𝑤𝜑) → (𝐴𝑤𝜏)))
101100impd 409 . . 3 (𝐴 ∈ Fin → ((∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤) → 𝜏))
102101rexlimdvw 3158 . 2 (𝐴 ∈ Fin → (∃𝑤 ∈ ω (∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤) → 𝜏))
10396, 102mpd 15 1 (𝐴 ∈ Fin → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1537   = wceq 1539  wcel 2104  wral 3059  wrex 3068  wss 3947  wpss 3948   class class class wbr 5147  Ord word 6362  Oncon0 6363  ωcom 7857  cen 8938  cdom 8939  csdm 8940  Fincfn 8941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-om 7858  df-1o 8468  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945
This theorem is referenced by:  marypha1lem  9430  pgpfac1  19991  pgpfac  19995  fbfinnfr  23565  wilthlem3  26810
  Copyright terms: Public domain W3C validator