MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findcard3 Structured version   Visualization version   GIF version

Theorem findcard3 9289
Description: Schema for strong induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on any proper subset. The result is then proven to be true for all finite sets. (Contributed by Mario Carneiro, 13-Dec-2013.) Avoid ax-pow 5363. (Revised by BTernaryTau, 7-Jan-2025.)
Hypotheses
Ref Expression
findcard3.1 (𝑥 = 𝑦 → (𝜑𝜒))
findcard3.2 (𝑥 = 𝐴 → (𝜑𝜏))
findcard3.3 (𝑦 ∈ Fin → (∀𝑥(𝑥𝑦𝜑) → 𝜒))
Assertion
Ref Expression
findcard3 (𝐴 ∈ Fin → 𝜏)
Distinct variable groups:   𝜒,𝑥   𝜏,𝑥   𝑥,𝑦   𝑥,𝐴   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜒(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem findcard3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 8976 . . 3 (𝐴 ∈ Fin ↔ ∃𝑤 ∈ ω 𝐴𝑤)
2 nnon 7865 . . . . . 6 (𝑤 ∈ ω → 𝑤 ∈ On)
3 eleq1w 2815 . . . . . . . 8 (𝑤 = 𝑧 → (𝑤 ∈ ω ↔ 𝑧 ∈ ω))
4 breq2 5152 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑥𝑤𝑥𝑧))
54imbi1d 341 . . . . . . . . 9 (𝑤 = 𝑧 → ((𝑥𝑤𝜑) ↔ (𝑥𝑧𝜑)))
65albidv 1922 . . . . . . . 8 (𝑤 = 𝑧 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥𝑧𝜑)))
73, 6imbi12d 344 . . . . . . 7 (𝑤 = 𝑧 → ((𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑)) ↔ (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑))))
8 rspe 3245 . . . . . . . . . . . . . 14 ((𝑤 ∈ ω ∧ 𝑦𝑤) → ∃𝑤 ∈ ω 𝑦𝑤)
9 isfi 8976 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑦𝑤)
108, 9sylibr 233 . . . . . . . . . . . . 13 ((𝑤 ∈ ω ∧ 𝑦𝑤) → 𝑦 ∈ Fin)
11 19.21v 1941 . . . . . . . . . . . . . . . 16 (∀𝑥(𝑧 ∈ ω → (𝑥𝑧𝜑)) ↔ (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)))
1211ralbii 3092 . . . . . . . . . . . . . . 15 (∀𝑧𝑤𝑥(𝑧 ∈ ω → (𝑥𝑧𝜑)) ↔ ∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)))
13 ralcom4 3282 . . . . . . . . . . . . . . 15 (∀𝑧𝑤𝑥(𝑧 ∈ ω → (𝑥𝑧𝜑)) ↔ ∀𝑥𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)))
1412, 13bitr3i 277 . . . . . . . . . . . . . 14 (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) ↔ ∀𝑥𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)))
15 pssss 4095 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑦𝑥𝑦)
16 ssfi 9177 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ Fin ∧ 𝑥𝑦) → 𝑥 ∈ Fin)
17 isfi 8976 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ Fin ↔ ∃𝑧 ∈ ω 𝑥𝑧)
1816, 17sylib 217 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ Fin ∧ 𝑥𝑦) → ∃𝑧 ∈ ω 𝑥𝑧)
1910, 15, 18syl2an 595 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → ∃𝑧 ∈ ω 𝑥𝑧)
20 simprl 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑧 ∈ ω)
21 nnfi 9171 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ ω → 𝑧 ∈ Fin)
22 ensymfib 9191 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ Fin → (𝑧𝑥𝑥𝑧))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ ω → (𝑧𝑥𝑥𝑧))
2423biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ω ∧ 𝑥𝑧) → 𝑧𝑥)
2524adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑧𝑥)
26 simplll 772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑤 ∈ ω)
27 php3 9216 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 ∈ Fin ∧ 𝑥𝑦) → 𝑥𝑦)
2810, 27sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → 𝑥𝑦)
2928adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑥𝑦)
30 simpllr 773 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑦𝑤)
31 endom 8979 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝑤𝑦𝑤)
32 nnfi 9171 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 ∈ ω → 𝑤 ∈ Fin)
33 domfi 9196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑤 ∈ Fin ∧ 𝑦𝑤) → 𝑦 ∈ Fin)
3432, 33sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑤 ∈ ω ∧ 𝑦𝑤) → 𝑦 ∈ Fin)
35343adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑤 ∈ ω ∧ 𝑥𝑦𝑦𝑤) → 𝑦 ∈ Fin)
36 sdomdom 8980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥𝑦𝑥𝑦)
37 domfi 9196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑦 ∈ Fin ∧ 𝑥𝑦) → 𝑥 ∈ Fin)
3836, 37sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑦 ∈ Fin ∧ 𝑥𝑦) → 𝑥 ∈ Fin)
39383adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑦 ∈ Fin ∧ 𝑥𝑦𝑦𝑤) → 𝑥 ∈ Fin)
4035, 39syld3an1 1409 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑤 ∈ ω ∧ 𝑥𝑦𝑦𝑤) → 𝑥 ∈ Fin)
41 sdomdomtrfi 9208 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ Fin ∧ 𝑥𝑦𝑦𝑤) → 𝑥𝑤)
4240, 41syld3an1 1409 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑤 ∈ ω ∧ 𝑥𝑦𝑦𝑤) → 𝑥𝑤)
4331, 42syl3an3 1164 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑤 ∈ ω ∧ 𝑥𝑦𝑦𝑤) → 𝑥𝑤)
4426, 29, 30, 43syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑥𝑤)
45 endom 8979 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧𝑥𝑧𝑥)
46 domsdomtrfi 9209 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ Fin ∧ 𝑧𝑥𝑥𝑤) → 𝑧𝑤)
4721, 46syl3an1 1162 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ω ∧ 𝑧𝑥𝑥𝑤) → 𝑧𝑤)
4845, 47syl3an2 1163 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ω ∧ 𝑧𝑥𝑥𝑤) → 𝑧𝑤)
4920, 25, 44, 48syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑧𝑤)
50 nnsdomo 9238 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ω ∧ 𝑤 ∈ ω) → (𝑧𝑤𝑧𝑤))
51 nnord 7867 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ ω → Ord 𝑧)
52 nnord 7867 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ ω → Ord 𝑤)
53 ordelpss 6392 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Ord 𝑧 ∧ Ord 𝑤) → (𝑧𝑤𝑧𝑤))
5451, 52, 53syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ω ∧ 𝑤 ∈ ω) → (𝑧𝑤𝑧𝑤))
5550, 54bitr4d 282 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ω ∧ 𝑤 ∈ ω) → (𝑧𝑤𝑧𝑤))
5620, 26, 55syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → (𝑧𝑤𝑧𝑤))
5749, 56mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) ∧ (𝑧 ∈ ω ∧ 𝑥𝑧)) → 𝑧𝑤)
5857ex 412 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → ((𝑧 ∈ ω ∧ 𝑥𝑧) → 𝑧𝑤))
59 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ω ∧ 𝑥𝑧) → 𝑥𝑧)
6058, 59jca2 513 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → ((𝑧 ∈ ω ∧ 𝑥𝑧) → (𝑧𝑤𝑥𝑧)))
6160reximdv2 3163 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (∃𝑧 ∈ ω 𝑥𝑧 → ∃𝑧𝑤 𝑥𝑧))
6219, 61mpd 15 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → ∃𝑧𝑤 𝑥𝑧)
63 r19.29 3113 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ ∃𝑧𝑤 𝑥𝑧) → ∃𝑧𝑤 ((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧))
6463expcom 413 . . . . . . . . . . . . . . . . . . 19 (∃𝑧𝑤 𝑥𝑧 → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → ∃𝑧𝑤 ((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧)))
6562, 64syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → ∃𝑧𝑤 ((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧)))
66 ordom 7869 . . . . . . . . . . . . . . . . . . . . . . 23 Ord ω
67 ordelss 6380 . . . . . . . . . . . . . . . . . . . . . . 23 ((Ord ω ∧ 𝑤 ∈ ω) → 𝑤 ⊆ ω)
6866, 67mpan 687 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ω → 𝑤 ⊆ ω)
6968ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → 𝑤 ⊆ ω)
7069sseld 3981 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (𝑧𝑤𝑧 ∈ ω))
71 pm2.27 42 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ω → ((𝑧 ∈ ω → (𝑥𝑧𝜑)) → (𝑥𝑧𝜑)))
7271impd 410 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ω → (((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧) → 𝜑))
7370, 72syl6 35 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (𝑧𝑤 → (((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧) → 𝜑)))
7473rexlimdv 3152 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (∃𝑧𝑤 ((𝑧 ∈ ω → (𝑥𝑧𝜑)) ∧ 𝑥𝑧) → 𝜑))
7565, 74syld 47 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ω ∧ 𝑦𝑤) ∧ 𝑥𝑦) → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → 𝜑))
7675ex 412 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (𝑥𝑦 → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → 𝜑)))
7776com23 86 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (∀𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → (𝑥𝑦𝜑)))
7877alimdv 1918 . . . . . . . . . . . . . 14 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (∀𝑥𝑧𝑤 (𝑧 ∈ ω → (𝑥𝑧𝜑)) → ∀𝑥(𝑥𝑦𝜑)))
7914, 78biimtrid 241 . . . . . . . . . . . . 13 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → ∀𝑥(𝑥𝑦𝜑)))
80 findcard3.3 . . . . . . . . . . . . 13 (𝑦 ∈ Fin → (∀𝑥(𝑥𝑦𝜑) → 𝜒))
8110, 79, 80sylsyld 61 . . . . . . . . . . . 12 ((𝑤 ∈ ω ∧ 𝑦𝑤) → (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → 𝜒))
8281impancom 451 . . . . . . . . . . 11 ((𝑤 ∈ ω ∧ ∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑))) → (𝑦𝑤𝜒))
8382alrimiv 1929 . . . . . . . . . 10 ((𝑤 ∈ ω ∧ ∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑))) → ∀𝑦(𝑦𝑤𝜒))
8483expcom 413 . . . . . . . . 9 (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → (𝑤 ∈ ω → ∀𝑦(𝑦𝑤𝜒)))
85 breq1 5151 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝑤𝑦𝑤))
86 findcard3.1 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝜑𝜒))
8785, 86imbi12d 344 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥𝑤𝜑) ↔ (𝑦𝑤𝜒)))
8887cbvalvw 2038 . . . . . . . . 9 (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑦(𝑦𝑤𝜒))
8984, 88imbitrrdi 251 . . . . . . . 8 (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑)))
9089a1i 11 . . . . . . 7 (𝑤 ∈ On → (∀𝑧𝑤 (𝑧 ∈ ω → ∀𝑥(𝑥𝑧𝜑)) → (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑))))
917, 90tfis2 7850 . . . . . 6 (𝑤 ∈ On → (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑)))
922, 91mpcom 38 . . . . 5 (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑))
9392rgen 3062 . . . 4 𝑤 ∈ ω ∀𝑥(𝑥𝑤𝜑)
94 r19.29 3113 . . . 4 ((∀𝑤 ∈ ω ∀𝑥(𝑥𝑤𝜑) ∧ ∃𝑤 ∈ ω 𝐴𝑤) → ∃𝑤 ∈ ω (∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤))
9593, 94mpan 687 . . 3 (∃𝑤 ∈ ω 𝐴𝑤 → ∃𝑤 ∈ ω (∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤))
961, 95sylbi 216 . 2 (𝐴 ∈ Fin → ∃𝑤 ∈ ω (∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤))
97 breq1 5151 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑤𝐴𝑤))
98 findcard3.2 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜏))
9997, 98imbi12d 344 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑤𝜑) ↔ (𝐴𝑤𝜏)))
10099spcgv 3586 . . . 4 (𝐴 ∈ Fin → (∀𝑥(𝑥𝑤𝜑) → (𝐴𝑤𝜏)))
101100impd 410 . . 3 (𝐴 ∈ Fin → ((∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤) → 𝜏))
102101rexlimdvw 3159 . 2 (𝐴 ∈ Fin → (∃𝑤 ∈ ω (∀𝑥(𝑥𝑤𝜑) ∧ 𝐴𝑤) → 𝜏))
10396, 102mpd 15 1 (𝐴 ∈ Fin → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1538   = wceq 1540  wcel 2105  wral 3060  wrex 3069  wss 3948  wpss 3949   class class class wbr 5148  Ord word 6363  Oncon0 6364  ωcom 7859  cen 8940  cdom 8941  csdm 8942  Fincfn 8943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7860  df-1o 8470  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947
This theorem is referenced by:  marypha1lem  9432  pgpfac1  19992  pgpfac  19996  fbfinnfr  23566  wilthlem3  26811
  Copyright terms: Public domain W3C validator