Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  el0ldepsnzr Structured version   Visualization version   GIF version

Theorem el0ldepsnzr 45866
Description: A set containing the zero element of a module over a nonzero ring is always linearly dependent. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.)
Assertion
Ref Expression
el0ldepsnzr (((𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ NzRing) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → 𝑆 linDepS 𝑀)

Proof of Theorem el0ldepsnzr
StepHypRef Expression
1 simp1l 1197 . . 3 (((𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ NzRing) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → 𝑀 ∈ LMod)
2 eqid 2736 . . . . . . 7 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
32isnzr2hash 20580 . . . . . 6 ((Scalar‘𝑀) ∈ NzRing ↔ ((Scalar‘𝑀) ∈ Ring ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))))
43simprbi 498 . . . . 5 ((Scalar‘𝑀) ∈ NzRing → 1 < (♯‘(Base‘(Scalar‘𝑀))))
54adantl 483 . . . 4 ((𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ NzRing) → 1 < (♯‘(Base‘(Scalar‘𝑀))))
653ad2ant1 1133 . . 3 (((𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ NzRing) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → 1 < (♯‘(Base‘(Scalar‘𝑀))))
71, 6jca 513 . 2 (((𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ NzRing) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))))
8 el0ldep 45865 . 2 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → 𝑆 linDepS 𝑀)
97, 8syld3an1 1410 1 (((𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ NzRing) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → 𝑆 linDepS 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087  wcel 2104  𝒫 cpw 4539   class class class wbr 5081  cfv 6458  1c1 10918   < clt 11055  chash 14090  Basecbs 16957  Scalarcsca 17010  0gc0g 17195  Ringcrg 19828  LModclmod 20168  NzRingcnzr 20573   linDepS clindeps 45840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-supp 8009  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-oadd 8332  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-fsupp 9173  df-dju 9703  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-2 12082  df-n0 12280  df-xnn0 12352  df-z 12366  df-uz 12629  df-fz 13286  df-seq 13768  df-hash 14091  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-plusg 17020  df-0g 17197  df-gsum 17198  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-grp 18625  df-minusg 18626  df-mgp 19766  df-ur 19783  df-ring 19830  df-lmod 20170  df-nzr 20574  df-linc 45805  df-lininds 45841  df-lindeps 45843
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator