![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltmuldiv | Structured version Visualization version GIF version |
Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 12-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltmuldiv | โข ((๐ด โ โ โง ๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ ((๐ด ยท ๐ถ) < ๐ต โ ๐ด < (๐ต / ๐ถ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . . 4 โข ((๐ด โ โ โง ๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ ๐ด โ โ) | |
2 | simp3l 1199 | . . . 4 โข ((๐ด โ โ โง ๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ ๐ถ โ โ) | |
3 | 1, 2 | remulcld 11274 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ (๐ด ยท ๐ถ) โ โ) |
4 | ltdiv1 12108 | . . 3 โข (((๐ด ยท ๐ถ) โ โ โง ๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ ((๐ด ยท ๐ถ) < ๐ต โ ((๐ด ยท ๐ถ) / ๐ถ) < (๐ต / ๐ถ))) | |
5 | 3, 4 | syld3an1 1408 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ ((๐ด ยท ๐ถ) < ๐ต โ ((๐ด ยท ๐ถ) / ๐ถ) < (๐ต / ๐ถ))) |
6 | 1 | recnd 11272 | . . . 4 โข ((๐ด โ โ โง ๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ ๐ด โ โ) |
7 | 2 | recnd 11272 | . . . 4 โข ((๐ด โ โ โง ๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ ๐ถ โ โ) |
8 | simp3r 1200 | . . . . 5 โข ((๐ด โ โ โง ๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ 0 < ๐ถ) | |
9 | 8 | gt0ne0d 11808 | . . . 4 โข ((๐ด โ โ โง ๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ ๐ถ โ 0) |
10 | 6, 7, 9 | divcan4d 12026 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ ((๐ด ยท ๐ถ) / ๐ถ) = ๐ด) |
11 | 10 | breq1d 5158 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ (((๐ด ยท ๐ถ) / ๐ถ) < (๐ต / ๐ถ) โ ๐ด < (๐ต / ๐ถ))) |
12 | 5, 11 | bitrd 279 | 1 โข ((๐ด โ โ โง ๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ ((๐ด ยท ๐ถ) < ๐ต โ ๐ด < (๐ต / ๐ถ))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 โง wa 395 โง w3a 1085 โ wcel 2099 class class class wbr 5148 (class class class)co 7420 โcr 11137 0cc0 11138 ยท cmul 11143 < clt 11278 / cdiv 11901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 |
This theorem is referenced by: ltmuldiv2 12118 lt2mul2div 12122 ltrec 12126 ltmuldivi 12164 avglt1 12480 3halfnz 12671 ltmuldivd 13095 expmulnbnd 14229 geomulcvg 15854 prmind2 16655 isprm5 16677 hashgcdlem 16756 nlmvscnlem2 24601 nmoleub2lem3 25041 ipcnlem2 25171 opnmbllem 25529 abelthlem7 26374 tangtx 26439 logdivlti 26553 logf1o2 26583 ang180lem2 26741 mersenne 27159 chebbnd1lem3 27403 chtppilim 27407 opnmbllem0 37129 pellfundex 42306 divgt1b 47581 |
Copyright terms: Public domain | W3C validator |