![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dih11 | Structured version Visualization version GIF version |
Description: The isomorphism H is one-to-one. Part of proof after Lemma N of [Crawley] p. 122 line 6. (Contributed by NM, 7-Mar-2014.) |
Ref | Expression |
---|---|
dih11.b | β’ π΅ = (BaseβπΎ) |
dih11.h | β’ π» = (LHypβπΎ) |
dih11.i | β’ πΌ = ((DIsoHβπΎ)βπ) |
Ref | Expression |
---|---|
dih11 | β’ (((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β ((πΌβπ) = (πΌβπ) β π = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3990 | . 2 β’ ((πΌβπ) = (πΌβπ) β ((πΌβπ) β (πΌβπ) β§ (πΌβπ) β (πΌβπ))) | |
2 | dih11.b | . . . . 5 β’ π΅ = (BaseβπΎ) | |
3 | eqid 2724 | . . . . 5 β’ (leβπΎ) = (leβπΎ) | |
4 | dih11.h | . . . . 5 β’ π» = (LHypβπΎ) | |
5 | dih11.i | . . . . 5 β’ πΌ = ((DIsoHβπΎ)βπ) | |
6 | 2, 3, 4, 5 | dihord 40638 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β ((πΌβπ) β (πΌβπ) β π(leβπΎ)π)) |
7 | 2, 3, 4, 5 | dihord 40638 | . . . . 5 β’ (((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β ((πΌβπ) β (πΌβπ) β π(leβπΎ)π)) |
8 | 7 | 3com23 1123 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β ((πΌβπ) β (πΌβπ) β π(leβπΎ)π)) |
9 | 6, 8 | anbi12d 630 | . . 3 β’ (((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β (((πΌβπ) β (πΌβπ) β§ (πΌβπ) β (πΌβπ)) β (π(leβπΎ)π β§ π(leβπΎ)π))) |
10 | simp1l 1194 | . . . . 5 β’ (((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β πΎ β HL) | |
11 | 10 | hllatd 38737 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β πΎ β Lat) |
12 | 2, 3 | latasymb 18403 | . . . 4 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β ((π(leβπΎ)π β§ π(leβπΎ)π) β π = π)) |
13 | 11, 12 | syld3an1 1407 | . . 3 β’ (((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β ((π(leβπΎ)π β§ π(leβπΎ)π) β π = π)) |
14 | 9, 13 | bitrd 279 | . 2 β’ (((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β (((πΌβπ) β (πΌβπ) β§ (πΌβπ) β (πΌβπ)) β π = π)) |
15 | 1, 14 | bitrid 283 | 1 β’ (((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β ((πΌβπ) = (πΌβπ) β π = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β wss 3941 class class class wbr 5139 βcfv 6534 Basecbs 17149 lecple 17209 Latclat 18392 HLchlt 38723 LHypclh 39358 DIsoHcdih 40602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-riotaBAD 38326 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-tpos 8207 df-undef 8254 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13486 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-0g 17392 df-proset 18256 df-poset 18274 df-plt 18291 df-lub 18307 df-glb 18308 df-join 18309 df-meet 18310 df-p0 18386 df-p1 18387 df-lat 18393 df-clat 18460 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-submnd 18710 df-grp 18862 df-minusg 18863 df-sbg 18864 df-subg 19046 df-cntz 19229 df-lsm 19552 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-dvr 20299 df-drng 20585 df-lmod 20704 df-lss 20775 df-lsp 20815 df-lvec 20947 df-oposet 38549 df-ol 38551 df-oml 38552 df-covers 38639 df-ats 38640 df-atl 38671 df-cvlat 38695 df-hlat 38724 df-llines 38872 df-lplanes 38873 df-lvols 38874 df-lines 38875 df-psubsp 38877 df-pmap 38878 df-padd 39170 df-lhyp 39362 df-laut 39363 df-ldil 39478 df-ltrn 39479 df-trl 39533 df-tendo 40129 df-edring 40131 df-disoa 40403 df-dvech 40453 df-dib 40513 df-dic 40547 df-dih 40603 |
This theorem is referenced by: dihf11 40641 dihcnv11 40649 dih0bN 40655 dihlspsnat 40707 dihatexv 40712 dihatexv2 40713 dihmeet2 40720 dochvalr3 40737 djhljjN 40776 dihjat5N 40811 |
Copyright terms: Public domain | W3C validator |