Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dih11 Structured version   Visualization version   GIF version

Theorem dih11 40639
Description: The isomorphism H is one-to-one. Part of proof after Lemma N of [Crawley] p. 122 line 6. (Contributed by NM, 7-Mar-2014.)
Hypotheses
Ref Expression
dih11.b 𝐡 = (Baseβ€˜πΎ)
dih11.h 𝐻 = (LHypβ€˜πΎ)
dih11.i 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dih11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ((πΌβ€˜π‘‹) = (πΌβ€˜π‘Œ) ↔ 𝑋 = π‘Œ))

Proof of Theorem dih11
StepHypRef Expression
1 eqss 3990 . 2 ((πΌβ€˜π‘‹) = (πΌβ€˜π‘Œ) ↔ ((πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ) ∧ (πΌβ€˜π‘Œ) βŠ† (πΌβ€˜π‘‹)))
2 dih11.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
3 eqid 2724 . . . . 5 (leβ€˜πΎ) = (leβ€˜πΎ)
4 dih11.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
5 dih11.i . . . . 5 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
62, 3, 4, 5dihord 40638 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ((πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ) ↔ 𝑋(leβ€˜πΎ)π‘Œ))
72, 3, 4, 5dihord 40638 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘Œ ∈ 𝐡 ∧ 𝑋 ∈ 𝐡) β†’ ((πΌβ€˜π‘Œ) βŠ† (πΌβ€˜π‘‹) ↔ π‘Œ(leβ€˜πΎ)𝑋))
873com23 1123 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ((πΌβ€˜π‘Œ) βŠ† (πΌβ€˜π‘‹) ↔ π‘Œ(leβ€˜πΎ)𝑋))
96, 8anbi12d 630 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (((πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ) ∧ (πΌβ€˜π‘Œ) βŠ† (πΌβ€˜π‘‹)) ↔ (𝑋(leβ€˜πΎ)π‘Œ ∧ π‘Œ(leβ€˜πΎ)𝑋)))
10 simp1l 1194 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ 𝐾 ∈ HL)
1110hllatd 38737 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ 𝐾 ∈ Lat)
122, 3latasymb 18403 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ((𝑋(leβ€˜πΎ)π‘Œ ∧ π‘Œ(leβ€˜πΎ)𝑋) ↔ 𝑋 = π‘Œ))
1311, 12syld3an1 1407 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ((𝑋(leβ€˜πΎ)π‘Œ ∧ π‘Œ(leβ€˜πΎ)𝑋) ↔ 𝑋 = π‘Œ))
149, 13bitrd 279 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (((πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ) ∧ (πΌβ€˜π‘Œ) βŠ† (πΌβ€˜π‘‹)) ↔ 𝑋 = π‘Œ))
151, 14bitrid 283 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ((πΌβ€˜π‘‹) = (πΌβ€˜π‘Œ) ↔ 𝑋 = π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   βŠ† wss 3941   class class class wbr 5139  β€˜cfv 6534  Basecbs 17149  lecple 17209  Latclat 18392  HLchlt 38723  LHypclh 39358  DIsoHcdih 40602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-riotaBAD 38326
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-tpos 8207  df-undef 8254  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13486  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-sca 17218  df-vsca 17219  df-0g 17392  df-proset 18256  df-poset 18274  df-plt 18291  df-lub 18307  df-glb 18308  df-join 18309  df-meet 18310  df-p0 18386  df-p1 18387  df-lat 18393  df-clat 18460  df-mgm 18569  df-sgrp 18648  df-mnd 18664  df-submnd 18710  df-grp 18862  df-minusg 18863  df-sbg 18864  df-subg 19046  df-cntz 19229  df-lsm 19552  df-cmn 19698  df-abl 19699  df-mgp 20036  df-rng 20054  df-ur 20083  df-ring 20136  df-oppr 20232  df-dvdsr 20255  df-unit 20256  df-invr 20286  df-dvr 20299  df-drng 20585  df-lmod 20704  df-lss 20775  df-lsp 20815  df-lvec 20947  df-oposet 38549  df-ol 38551  df-oml 38552  df-covers 38639  df-ats 38640  df-atl 38671  df-cvlat 38695  df-hlat 38724  df-llines 38872  df-lplanes 38873  df-lvols 38874  df-lines 38875  df-psubsp 38877  df-pmap 38878  df-padd 39170  df-lhyp 39362  df-laut 39363  df-ldil 39478  df-ltrn 39479  df-trl 39533  df-tendo 40129  df-edring 40131  df-disoa 40403  df-dvech 40453  df-dib 40513  df-dic 40547  df-dih 40603
This theorem is referenced by:  dihf11  40641  dihcnv11  40649  dih0bN  40655  dihlspsnat  40707  dihatexv  40712  dihatexv2  40713  dihmeet2  40720  dochvalr3  40737  djhljjN  40776  dihjat5N  40811
  Copyright terms: Public domain W3C validator