Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnss | Structured version Visualization version GIF version |
Description: Subset theorem for range. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
rnss | ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvss 5780 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
2 | dmss 5810 | . . 3 ⊢ (◡𝐴 ⊆ ◡𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) |
4 | df-rn 5601 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
5 | df-rn 5601 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
6 | 3, 4, 5 | 3sstr4g 3971 | 1 ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3892 ◡ccnv 5589 dom cdm 5590 ran crn 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-cnv 5598 df-dm 5600 df-rn 5601 |
This theorem is referenced by: rnssi 5848 imass1 6008 imass2 6009 ssxpb 6076 sofld 6089 resssxp 6172 funssxp 6627 dff2 6972 dff3 6973 fliftf 7182 1stcof 7854 2ndcof 7855 frxp 7958 fodomfi 9070 marypha1lem 9170 marypha1 9171 dfac12lem2 9901 fpwwe2lem12 10399 prdsvallem 17163 prdsval 17164 prdsbas 17166 prdsplusg 17167 prdsmulr 17168 prdsvsca 17169 prdshom 17176 catcfuccl 17832 catcfucclOLD 17833 catcxpccl 17922 catcxpcclOLD 17923 odf1o2 19176 dprdres 19629 lmss 22447 txss12 22754 txbasval 22755 fmss 23095 tsmsxplem1 23302 ustimasn 23378 utopbas 23385 metustexhalf 23710 causs 24460 ovoliunlem1 24664 dvcnvrelem1 25179 taylf 25518 subgrprop3 27641 sspba 29085 imadifxp 30936 gsumpart 31311 metideq 31839 sxbrsigalem5 32251 omsmon 32261 carsggect 32281 carsgclctunlem2 32282 frxp2 33787 frxp3 33793 heicant 35808 mblfinlem1 35810 symrefref2 36673 dicval 39186 rntrclfvOAI 40510 diophrw 40578 dnnumch2 40867 lmhmlnmsplit 40909 hbtlem6 40951 mptrcllem 41191 rntrcl 41206 dfrcl2 41252 relexpss1d 41283 rfovcnvf1od 41582 supcnvlimsup 43252 fourierdlem42 43661 sge0less 43901 |
Copyright terms: Public domain | W3C validator |