| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for range. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| rnss | ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 5810 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
| 2 | dmss 5840 | . . 3 ⊢ (◡𝐴 ⊆ ◡𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) |
| 4 | df-rn 5625 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 5 | df-rn 5625 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 6 | 3, 4, 5 | 3sstr4g 3986 | 1 ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3900 ◡ccnv 5613 dom cdm 5614 ran crn 5615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-cnv 5622 df-dm 5624 df-rn 5625 |
| This theorem is referenced by: rnssi 5877 imass1 6047 imass2 6048 ssxpb 6118 sofld 6131 resssxp 6213 funssxp 6675 dff2 7027 dff3 7028 fliftf 7244 1stcof 7946 2ndcof 7947 frxp 8051 frxp2 8069 frxp3 8076 fodomfi 9191 fodomfiOLD 9209 marypha1lem 9312 marypha1 9313 dfac12lem2 10028 fpwwe2lem12 10525 prdsvallem 17350 prdsval 17351 prdsbas 17353 prdsplusg 17354 prdsmulr 17355 prdsvsca 17356 prdshom 17363 catcfuccl 18017 catcxpccl 18105 odf1o2 19478 dprdres 19935 lmss 23206 txss12 23513 txbasval 23514 fmss 23854 tsmsxplem1 24061 ustimasn 24136 utopbas 24143 metustexhalf 24464 causs 25218 ovoliunlem1 25423 dvcnvrelem1 25942 taylf 26288 subgrprop3 29247 sspba 30697 imadifxp 32571 gsumpart 33027 metideq 33896 sxbrsigalem5 34291 omsmon 34301 carsggect 34321 carsgclctunlem2 34322 heicant 37674 mblfinlem1 37676 symrefref2 38579 dicval 41194 aks6d1c2 42142 rntrclfvOAI 42703 diophrw 42771 dnnumch2 43057 lmhmlnmsplit 43099 hbtlem6 43141 mptrcllem 43625 rntrcl 43640 dfrcl2 43686 relexpss1d 43717 rfovcnvf1od 44016 supcnvlimsup 45757 fourierdlem42 46166 sge0less 46409 isubgredgss 47875 |
| Copyright terms: Public domain | W3C validator |