| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for range. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| rnss | ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 5836 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
| 2 | dmss 5866 | . . 3 ⊢ (◡𝐴 ⊆ ◡𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) |
| 4 | df-rn 5649 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 5 | df-rn 5649 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 6 | 3, 4, 5 | 3sstr4g 4000 | 1 ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3914 ◡ccnv 5637 dom cdm 5638 ran crn 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: rnssi 5904 imass1 6072 imass2 6073 ssxpb 6147 sofld 6160 resssxp 6243 funssxp 6716 dff2 7071 dff3 7072 fliftf 7290 1stcof 7998 2ndcof 7999 frxp 8105 frxp2 8123 frxp3 8130 fodomfi 9261 fodomfiOLD 9281 marypha1lem 9384 marypha1 9385 dfac12lem2 10098 fpwwe2lem12 10595 prdsvallem 17417 prdsval 17418 prdsbas 17420 prdsplusg 17421 prdsmulr 17422 prdsvsca 17423 prdshom 17430 catcfuccl 18080 catcxpccl 18168 odf1o2 19503 dprdres 19960 lmss 23185 txss12 23492 txbasval 23493 fmss 23833 tsmsxplem1 24040 ustimasn 24116 utopbas 24123 metustexhalf 24444 causs 25198 ovoliunlem1 25403 dvcnvrelem1 25922 taylf 26268 subgrprop3 29203 sspba 30656 imadifxp 32530 gsumpart 32997 metideq 33883 sxbrsigalem5 34279 omsmon 34289 carsggect 34309 carsgclctunlem2 34310 heicant 37649 mblfinlem1 37651 symrefref2 38554 dicval 41170 aks6d1c2 42118 rntrclfvOAI 42679 diophrw 42747 dnnumch2 43034 lmhmlnmsplit 43076 hbtlem6 43118 mptrcllem 43602 rntrcl 43617 dfrcl2 43663 relexpss1d 43694 rfovcnvf1od 43993 supcnvlimsup 45738 fourierdlem42 46147 sge0less 46390 isubgredgss 47865 |
| Copyright terms: Public domain | W3C validator |