| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for range. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| rnss | ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 5852 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
| 2 | dmss 5882 | . . 3 ⊢ (◡𝐴 ⊆ ◡𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) |
| 4 | df-rn 5665 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 5 | df-rn 5665 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 6 | 3, 4, 5 | 3sstr4g 4012 | 1 ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3926 ◡ccnv 5653 dom cdm 5654 ran crn 5655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-cnv 5662 df-dm 5664 df-rn 5665 |
| This theorem is referenced by: rnssi 5920 imass1 6088 imass2 6089 ssxpb 6163 sofld 6176 resssxp 6259 funssxp 6733 dff2 7088 dff3 7089 fliftf 7307 1stcof 8016 2ndcof 8017 frxp 8123 frxp2 8141 frxp3 8148 fodomfi 9320 fodomfiOLD 9340 marypha1lem 9443 marypha1 9444 dfac12lem2 10157 fpwwe2lem12 10654 prdsvallem 17466 prdsval 17467 prdsbas 17469 prdsplusg 17470 prdsmulr 17471 prdsvsca 17472 prdshom 17479 catcfuccl 18129 catcxpccl 18217 odf1o2 19552 dprdres 20009 lmss 23234 txss12 23541 txbasval 23542 fmss 23882 tsmsxplem1 24089 ustimasn 24165 utopbas 24172 metustexhalf 24493 causs 25248 ovoliunlem1 25453 dvcnvrelem1 25972 taylf 26318 subgrprop3 29201 sspba 30654 imadifxp 32528 gsumpart 32997 metideq 33870 sxbrsigalem5 34266 omsmon 34276 carsggect 34296 carsgclctunlem2 34297 heicant 37625 mblfinlem1 37627 symrefref2 38527 dicval 41141 aks6d1c2 42089 rntrclfvOAI 42661 diophrw 42729 dnnumch2 43016 lmhmlnmsplit 43058 hbtlem6 43100 mptrcllem 43584 rntrcl 43599 dfrcl2 43645 relexpss1d 43676 rfovcnvf1od 43975 supcnvlimsup 45717 fourierdlem42 46126 sge0less 46369 isubgredgss 47826 |
| Copyright terms: Public domain | W3C validator |