| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for range. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| rnss | ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 5839 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
| 2 | dmss 5869 | . . 3 ⊢ (◡𝐴 ⊆ ◡𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) |
| 4 | df-rn 5652 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 5 | df-rn 5652 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 6 | 3, 4, 5 | 3sstr4g 4003 | 1 ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3917 ◡ccnv 5640 dom cdm 5641 ran crn 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: rnssi 5907 imass1 6075 imass2 6076 ssxpb 6150 sofld 6163 resssxp 6246 funssxp 6719 dff2 7074 dff3 7075 fliftf 7293 1stcof 8001 2ndcof 8002 frxp 8108 frxp2 8126 frxp3 8133 fodomfi 9268 fodomfiOLD 9288 marypha1lem 9391 marypha1 9392 dfac12lem2 10105 fpwwe2lem12 10602 prdsvallem 17424 prdsval 17425 prdsbas 17427 prdsplusg 17428 prdsmulr 17429 prdsvsca 17430 prdshom 17437 catcfuccl 18087 catcxpccl 18175 odf1o2 19510 dprdres 19967 lmss 23192 txss12 23499 txbasval 23500 fmss 23840 tsmsxplem1 24047 ustimasn 24123 utopbas 24130 metustexhalf 24451 causs 25205 ovoliunlem1 25410 dvcnvrelem1 25929 taylf 26275 subgrprop3 29210 sspba 30663 imadifxp 32537 gsumpart 33004 metideq 33890 sxbrsigalem5 34286 omsmon 34296 carsggect 34316 carsgclctunlem2 34317 heicant 37656 mblfinlem1 37658 symrefref2 38561 dicval 41177 aks6d1c2 42125 rntrclfvOAI 42686 diophrw 42754 dnnumch2 43041 lmhmlnmsplit 43083 hbtlem6 43125 mptrcllem 43609 rntrcl 43624 dfrcl2 43670 relexpss1d 43701 rfovcnvf1od 44000 supcnvlimsup 45745 fourierdlem42 46154 sge0less 46397 isubgredgss 47869 |
| Copyright terms: Public domain | W3C validator |