| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for range. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| rnss | ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 5819 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
| 2 | dmss 5849 | . . 3 ⊢ (◡𝐴 ⊆ ◡𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) |
| 4 | df-rn 5632 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 5 | df-rn 5632 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 6 | 3, 4, 5 | 3sstr4g 3985 | 1 ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3899 ◡ccnv 5620 dom cdm 5621 ran crn 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-cnv 5629 df-dm 5631 df-rn 5632 |
| This theorem is referenced by: rnssi 5887 imass1 6057 imass2 6058 ssxpb 6129 sofld 6142 resssxp 6225 funssxp 6687 dff2 7041 dff3 7042 fliftf 7258 1stcof 7960 2ndcof 7961 frxp 8065 frxp2 8083 frxp3 8090 fodomfi 9206 fodomfiOLD 9224 marypha1lem 9327 marypha1 9328 dfac12lem2 10046 fpwwe2lem12 10543 prdsvallem 17368 prdsval 17369 prdsbas 17371 prdsplusg 17372 prdsmulr 17373 prdsvsca 17374 prdshom 17381 catcfuccl 18035 catcxpccl 18123 odf1o2 19495 dprdres 19952 lmss 23223 txss12 23530 txbasval 23531 fmss 23871 tsmsxplem1 24078 ustimasn 24153 utopbas 24160 metustexhalf 24481 causs 25235 ovoliunlem1 25440 dvcnvrelem1 25959 taylf 26305 subgrprop3 29265 sspba 30718 imadifxp 32592 gsumpart 33048 metideq 33917 sxbrsigalem5 34312 omsmon 34322 carsggect 34342 carsgclctunlem2 34343 heicant 37705 mblfinlem1 37707 symrefref2 38669 dicval 41285 aks6d1c2 42233 rntrclfvOAI 42798 diophrw 42866 dnnumch2 43152 lmhmlnmsplit 43194 hbtlem6 43236 mptrcllem 43720 rntrcl 43735 dfrcl2 43781 relexpss1d 43812 rfovcnvf1od 44111 supcnvlimsup 45852 fourierdlem42 46261 sge0less 46504 isubgredgss 47979 |
| Copyright terms: Public domain | W3C validator |