Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnss | Structured version Visualization version GIF version |
Description: Subset theorem for range. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
rnss | ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvss 5770 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
2 | dmss 5800 | . . 3 ⊢ (◡𝐴 ⊆ ◡𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) |
4 | df-rn 5591 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
5 | df-rn 5591 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
6 | 3, 4, 5 | 3sstr4g 3962 | 1 ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3883 ◡ccnv 5579 dom cdm 5580 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: rnssi 5838 imass1 5998 imass2 5999 ssxpb 6066 sofld 6079 resssxp 6162 funssxp 6613 dff2 6957 dff3 6958 fliftf 7166 1stcof 7834 2ndcof 7835 frxp 7938 fodomfi 9022 marypha1lem 9122 marypha1 9123 dfac12lem2 9831 fpwwe2lem12 10329 prdsvallem 17082 prdsval 17083 prdsbas 17085 prdsplusg 17086 prdsmulr 17087 prdsvsca 17088 prdshom 17095 catcfuccl 17750 catcfucclOLD 17751 catcxpccl 17840 catcxpcclOLD 17841 odf1o2 19093 dprdres 19546 lmss 22357 txss12 22664 txbasval 22665 fmss 23005 tsmsxplem1 23212 ustimasn 23288 utopbas 23295 metustexhalf 23618 causs 24367 ovoliunlem1 24571 dvcnvrelem1 25086 taylf 25425 subgrprop3 27546 sspba 28990 imadifxp 30841 gsumpart 31217 metideq 31745 sxbrsigalem5 32155 omsmon 32165 carsggect 32185 carsgclctunlem2 32186 frxp2 33718 frxp3 33724 heicant 35739 mblfinlem1 35741 symrefref2 36604 dicval 39117 rntrclfvOAI 40429 diophrw 40497 dnnumch2 40786 lmhmlnmsplit 40828 hbtlem6 40870 mptrcllem 41110 rntrcl 41125 dfrcl2 41171 relexpss1d 41202 rfovcnvf1od 41501 supcnvlimsup 43171 fourierdlem42 43580 sge0less 43820 |
Copyright terms: Public domain | W3C validator |