![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnss | Structured version Visualization version GIF version |
Description: Subset theorem for range. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
rnss | ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvss 5897 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
2 | dmss 5927 | . . 3 ⊢ (◡𝐴 ⊆ ◡𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) |
4 | df-rn 5711 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
5 | df-rn 5711 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
6 | 3, 4, 5 | 3sstr4g 4054 | 1 ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3976 ◡ccnv 5699 dom cdm 5700 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: rnssi 5965 imass1 6131 imass2 6132 ssxpb 6205 sofld 6218 resssxp 6301 funssxp 6776 dff2 7133 dff3 7134 fliftf 7351 1stcof 8060 2ndcof 8061 frxp 8167 frxp2 8185 frxp3 8192 fodomfi 9378 fodomfiOLD 9398 marypha1lem 9502 marypha1 9503 dfac12lem2 10214 fpwwe2lem12 10711 prdsvallem 17514 prdsval 17515 prdsbas 17517 prdsplusg 17518 prdsmulr 17519 prdsvsca 17520 prdshom 17527 catcfuccl 18186 catcfucclOLD 18187 catcxpccl 18276 catcxpcclOLD 18277 odf1o2 19615 dprdres 20072 lmss 23327 txss12 23634 txbasval 23635 fmss 23975 tsmsxplem1 24182 ustimasn 24258 utopbas 24265 metustexhalf 24590 causs 25351 ovoliunlem1 25556 dvcnvrelem1 26076 taylf 26420 subgrprop3 29311 sspba 30759 imadifxp 32623 gsumpart 33038 metideq 33839 sxbrsigalem5 34253 omsmon 34263 carsggect 34283 carsgclctunlem2 34284 heicant 37615 mblfinlem1 37617 symrefref2 38519 dicval 41133 aks6d1c2 42087 rntrclfvOAI 42647 diophrw 42715 dnnumch2 43002 lmhmlnmsplit 43044 hbtlem6 43086 mptrcllem 43575 rntrcl 43590 dfrcl2 43636 relexpss1d 43667 rfovcnvf1od 43966 supcnvlimsup 45661 fourierdlem42 46070 sge0less 46313 |
Copyright terms: Public domain | W3C validator |