| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for range. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| rnss | ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 5819 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
| 2 | dmss 5849 | . . 3 ⊢ (◡𝐴 ⊆ ◡𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) |
| 4 | df-rn 5634 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 5 | df-rn 5634 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 6 | 3, 4, 5 | 3sstr4g 3991 | 1 ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3905 ◡ccnv 5622 dom cdm 5623 ran crn 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-cnv 5631 df-dm 5633 df-rn 5634 |
| This theorem is referenced by: rnssi 5886 imass1 6056 imass2 6057 ssxpb 6127 sofld 6140 resssxp 6222 funssxp 6684 dff2 7037 dff3 7038 fliftf 7256 1stcof 7961 2ndcof 7962 frxp 8066 frxp2 8084 frxp3 8091 fodomfi 9219 fodomfiOLD 9239 marypha1lem 9342 marypha1 9343 dfac12lem2 10058 fpwwe2lem12 10555 prdsvallem 17376 prdsval 17377 prdsbas 17379 prdsplusg 17380 prdsmulr 17381 prdsvsca 17382 prdshom 17389 catcfuccl 18043 catcxpccl 18131 odf1o2 19470 dprdres 19927 lmss 23201 txss12 23508 txbasval 23509 fmss 23849 tsmsxplem1 24056 ustimasn 24132 utopbas 24139 metustexhalf 24460 causs 25214 ovoliunlem1 25419 dvcnvrelem1 25938 taylf 26284 subgrprop3 29239 sspba 30689 imadifxp 32563 gsumpart 33023 metideq 33859 sxbrsigalem5 34255 omsmon 34265 carsggect 34285 carsgclctunlem2 34286 heicant 37634 mblfinlem1 37636 symrefref2 38539 dicval 41155 aks6d1c2 42103 rntrclfvOAI 42664 diophrw 42732 dnnumch2 43018 lmhmlnmsplit 43060 hbtlem6 43102 mptrcllem 43586 rntrcl 43601 dfrcl2 43647 relexpss1d 43678 rfovcnvf1od 43977 supcnvlimsup 45722 fourierdlem42 46131 sge0less 46374 isubgredgss 47849 |
| Copyright terms: Public domain | W3C validator |