![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnss | Structured version Visualization version GIF version |
Description: Subset theorem for range. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
rnss | ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvss 5885 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
2 | dmss 5915 | . . 3 ⊢ (◡𝐴 ⊆ ◡𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) |
4 | df-rn 5699 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
5 | df-rn 5699 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
6 | 3, 4, 5 | 3sstr4g 4040 | 1 ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3962 ◡ccnv 5687 dom cdm 5688 ran crn 5689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-cnv 5696 df-dm 5698 df-rn 5699 |
This theorem is referenced by: rnssi 5953 imass1 6121 imass2 6122 ssxpb 6195 sofld 6208 resssxp 6291 funssxp 6764 dff2 7118 dff3 7119 fliftf 7334 1stcof 8042 2ndcof 8043 frxp 8149 frxp2 8167 frxp3 8174 fodomfi 9347 fodomfiOLD 9367 marypha1lem 9470 marypha1 9471 dfac12lem2 10182 fpwwe2lem12 10679 prdsvallem 17500 prdsval 17501 prdsbas 17503 prdsplusg 17504 prdsmulr 17505 prdsvsca 17506 prdshom 17513 catcfuccl 18172 catcfucclOLD 18173 catcxpccl 18262 catcxpcclOLD 18263 odf1o2 19605 dprdres 20062 lmss 23321 txss12 23628 txbasval 23629 fmss 23969 tsmsxplem1 24176 ustimasn 24252 utopbas 24259 metustexhalf 24584 causs 25345 ovoliunlem1 25550 dvcnvrelem1 26070 taylf 26416 subgrprop3 29307 sspba 30755 imadifxp 32620 gsumpart 33042 metideq 33853 sxbrsigalem5 34269 omsmon 34279 carsggect 34299 carsgclctunlem2 34300 heicant 37641 mblfinlem1 37643 symrefref2 38544 dicval 41158 aks6d1c2 42111 rntrclfvOAI 42678 diophrw 42746 dnnumch2 43033 lmhmlnmsplit 43075 hbtlem6 43117 mptrcllem 43602 rntrcl 43617 dfrcl2 43663 relexpss1d 43694 rfovcnvf1od 43993 supcnvlimsup 45695 fourierdlem42 46104 sge0less 46347 isubgredgss 47788 |
Copyright terms: Public domain | W3C validator |