| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refsymrels2 | Structured version Visualization version GIF version | ||
| Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 38579) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 version of dfrefrels2 38504, cf. the comment of dfrefrels2 38504. (Contributed by Peter Mazsa, 20-Jul-2019.) |
| Ref | Expression |
|---|---|
| refsymrels2 | ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrefrels2 38504 | . . 3 ⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} | |
| 2 | dfsymrels2 38536 | . . 3 ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟} | |
| 3 | 1, 2 | ineq12i 4181 | . 2 ⊢ ( RefRels ∩ SymRels ) = ({𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟}) |
| 4 | inrab 4279 | . 2 ⊢ ({𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟}) = {𝑟 ∈ Rels ∣ (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} | |
| 5 | symrefref2 38554 | . . . 4 ⊢ (◡𝑟 ⊆ 𝑟 → (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ↔ ( I ↾ dom 𝑟) ⊆ 𝑟)) | |
| 6 | 5 | pm5.32ri 575 | . . 3 ⊢ ((( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ↔ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)) |
| 7 | 6 | rabbii 3411 | . 2 ⊢ {𝑟 ∈ Rels ∣ (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} |
| 8 | 3, 4, 7 | 3eqtri 2756 | 1 ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 {crab 3405 ∩ cin 3913 ⊆ wss 3914 I cid 5532 × cxp 5636 ◡ccnv 5637 dom cdm 5638 ran crn 5639 ↾ cres 5640 Rels crels 38171 RefRels crefrels 38174 SymRels csymrels 38180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-rels 38476 df-ssr 38489 df-refs 38501 df-refrels 38502 df-syms 38533 df-symrels 38534 |
| This theorem is referenced by: refsymrels3 38557 elrefsymrels2 38560 dfeqvrels2 38579 refrelsredund4 38623 |
| Copyright terms: Public domain | W3C validator |