Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsymrels2 Structured version   Visualization version   GIF version

Theorem refsymrels2 37527
Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 37550) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 version of dfrefrels2 37475, cf. the comment of dfrefrels2 37475. (Contributed by Peter Mazsa, 20-Jul-2019.)
Assertion
Ref Expression
refsymrels2 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}

Proof of Theorem refsymrels2
StepHypRef Expression
1 dfrefrels2 37475 . . 3 RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}
2 dfsymrels2 37507 . . 3 SymRels = {𝑟 ∈ Rels ∣ 𝑟𝑟}
31, 2ineq12i 4210 . 2 ( RefRels ∩ SymRels ) = ({𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ 𝑟𝑟})
4 inrab 4306 . 2 ({𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ 𝑟𝑟}) = {𝑟 ∈ Rels ∣ (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟𝑟𝑟)}
5 symrefref2 37525 . . . 4 (𝑟𝑟 → (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ↔ ( I ↾ dom 𝑟) ⊆ 𝑟))
65pm5.32ri 576 . . 3 ((( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟𝑟𝑟) ↔ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟))
76rabbii 3438 . 2 {𝑟 ∈ Rels ∣ (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟𝑟𝑟)} = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
83, 4, 73eqtri 2764 1 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  {crab 3432  cin 3947  wss 3948   I cid 5573   × cxp 5674  ccnv 5675  dom cdm 5676  ran crn 5677  cres 5678   Rels crels 37137   RefRels crefrels 37140   SymRels csymrels 37146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-rels 37447  df-ssr 37460  df-refs 37472  df-refrels 37473  df-syms 37504  df-symrels 37505
This theorem is referenced by:  refsymrels3  37528  elrefsymrels2  37531  dfeqvrels2  37550  refrelsredund4  37594
  Copyright terms: Public domain W3C validator