Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsymrels2 Structured version   Visualization version   GIF version

Theorem refsymrels2 36675
Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 36697) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 version of dfrefrels2 36627, cf. the comment of dfrefrels2 36627. (Contributed by Peter Mazsa, 20-Jul-2019.)
Assertion
Ref Expression
refsymrels2 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}

Proof of Theorem refsymrels2
StepHypRef Expression
1 dfrefrels2 36627 . . 3 RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}
2 dfsymrels2 36655 . . 3 SymRels = {𝑟 ∈ Rels ∣ 𝑟𝑟}
31, 2ineq12i 4150 . 2 ( RefRels ∩ SymRels ) = ({𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ 𝑟𝑟})
4 inrab 4246 . 2 ({𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ 𝑟𝑟}) = {𝑟 ∈ Rels ∣ (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟𝑟𝑟)}
5 symrefref2 36673 . . . 4 (𝑟𝑟 → (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ↔ ( I ↾ dom 𝑟) ⊆ 𝑟))
65pm5.32ri 576 . . 3 ((( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟𝑟𝑟) ↔ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟))
76rabbii 3406 . 2 {𝑟 ∈ Rels ∣ (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟𝑟𝑟)} = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
83, 4, 73eqtri 2772 1 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1542  {crab 3070  cin 3891  wss 3892   I cid 5489   × cxp 5588  ccnv 5589  dom cdm 5590  ran crn 5591  cres 5592   Rels crels 36331   RefRels crefrels 36334   SymRels csymrels 36340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-br 5080  df-opab 5142  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-dm 5600  df-rn 5601  df-res 5602  df-rels 36599  df-ssr 36612  df-refs 36624  df-refrels 36625  df-syms 36652  df-symrels 36653
This theorem is referenced by:  refsymrels3  36676  elrefsymrels2  36679  dfeqvrels2  36697  refrelsredund4  36741
  Copyright terms: Public domain W3C validator