Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsymrels2 Structured version   Visualization version   GIF version

Theorem refsymrels2 38681
Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 38704) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 version of dfrefrels2 38625, cf. the comment of dfrefrels2 38625. (Contributed by Peter Mazsa, 20-Jul-2019.)
Assertion
Ref Expression
refsymrels2 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}

Proof of Theorem refsymrels2
StepHypRef Expression
1 dfrefrels2 38625 . . 3 RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}
2 dfsymrels2 38657 . . 3 SymRels = {𝑟 ∈ Rels ∣ 𝑟𝑟}
31, 2ineq12i 4167 . 2 ( RefRels ∩ SymRels ) = ({𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ 𝑟𝑟})
4 inrab 4265 . 2 ({𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ 𝑟𝑟}) = {𝑟 ∈ Rels ∣ (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟𝑟𝑟)}
5 symrefref2 38679 . . . 4 (𝑟𝑟 → (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ↔ ( I ↾ dom 𝑟) ⊆ 𝑟))
65pm5.32ri 575 . . 3 ((( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟𝑟𝑟) ↔ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟))
76rabbii 3401 . 2 {𝑟 ∈ Rels ∣ (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟𝑟𝑟)} = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
83, 4, 73eqtri 2760 1 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  {crab 3396  cin 3897  wss 3898   I cid 5513   × cxp 5617  ccnv 5618  dom cdm 5619  ran crn 5620  cres 5621   Rels crels 38244   RefRels crefrels 38247   SymRels csymrels 38253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-rels 38484  df-ssr 38610  df-refs 38622  df-refrels 38623  df-syms 38654  df-symrels 38655
This theorem is referenced by:  refsymrels3  38682  elrefsymrels2  38685  dfeqvrels2  38704  refrelsredund4  38748
  Copyright terms: Public domain W3C validator