| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refsymrels2 | Structured version Visualization version GIF version | ||
| Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 38704) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 version of dfrefrels2 38625, cf. the comment of dfrefrels2 38625. (Contributed by Peter Mazsa, 20-Jul-2019.) |
| Ref | Expression |
|---|---|
| refsymrels2 | ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrefrels2 38625 | . . 3 ⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} | |
| 2 | dfsymrels2 38657 | . . 3 ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟} | |
| 3 | 1, 2 | ineq12i 4167 | . 2 ⊢ ( RefRels ∩ SymRels ) = ({𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟}) |
| 4 | inrab 4265 | . 2 ⊢ ({𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟}) = {𝑟 ∈ Rels ∣ (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} | |
| 5 | symrefref2 38679 | . . . 4 ⊢ (◡𝑟 ⊆ 𝑟 → (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ↔ ( I ↾ dom 𝑟) ⊆ 𝑟)) | |
| 6 | 5 | pm5.32ri 575 | . . 3 ⊢ ((( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ↔ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)) |
| 7 | 6 | rabbii 3401 | . 2 ⊢ {𝑟 ∈ Rels ∣ (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} |
| 8 | 3, 4, 7 | 3eqtri 2760 | 1 ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 {crab 3396 ∩ cin 3897 ⊆ wss 3898 I cid 5513 × cxp 5617 ◡ccnv 5618 dom cdm 5619 ran crn 5620 ↾ cres 5621 Rels crels 38244 RefRels crefrels 38247 SymRels csymrels 38253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-rels 38484 df-ssr 38610 df-refs 38622 df-refrels 38623 df-syms 38654 df-symrels 38655 |
| This theorem is referenced by: refsymrels3 38682 elrefsymrels2 38685 dfeqvrels2 38704 refrelsredund4 38748 |
| Copyright terms: Public domain | W3C validator |