Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > refsymrels2 | Structured version Visualization version GIF version |
Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 36697) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 version of dfrefrels2 36627, cf. the comment of dfrefrels2 36627. (Contributed by Peter Mazsa, 20-Jul-2019.) |
Ref | Expression |
---|---|
refsymrels2 | ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrefrels2 36627 | . . 3 ⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} | |
2 | dfsymrels2 36655 | . . 3 ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟} | |
3 | 1, 2 | ineq12i 4150 | . 2 ⊢ ( RefRels ∩ SymRels ) = ({𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟}) |
4 | inrab 4246 | . 2 ⊢ ({𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟}) = {𝑟 ∈ Rels ∣ (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} | |
5 | symrefref2 36673 | . . . 4 ⊢ (◡𝑟 ⊆ 𝑟 → (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ↔ ( I ↾ dom 𝑟) ⊆ 𝑟)) | |
6 | 5 | pm5.32ri 576 | . . 3 ⊢ ((( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ↔ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)) |
7 | 6 | rabbii 3406 | . 2 ⊢ {𝑟 ∈ Rels ∣ (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} |
8 | 3, 4, 7 | 3eqtri 2772 | 1 ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1542 {crab 3070 ∩ cin 3891 ⊆ wss 3892 I cid 5489 × cxp 5588 ◡ccnv 5589 dom cdm 5590 ran crn 5591 ↾ cres 5592 Rels crels 36331 RefRels crefrels 36334 SymRels csymrels 36340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-dm 5600 df-rn 5601 df-res 5602 df-rels 36599 df-ssr 36612 df-refs 36624 df-refrels 36625 df-syms 36652 df-symrels 36653 |
This theorem is referenced by: refsymrels3 36676 elrefsymrels2 36679 dfeqvrels2 36697 refrelsredund4 36741 |
Copyright terms: Public domain | W3C validator |