![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > refsymrels2 | Structured version Visualization version GIF version |
Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 38544) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 version of dfrefrels2 38469, cf. the comment of dfrefrels2 38469. (Contributed by Peter Mazsa, 20-Jul-2019.) |
Ref | Expression |
---|---|
refsymrels2 | ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrefrels2 38469 | . . 3 ⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} | |
2 | dfsymrels2 38501 | . . 3 ⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟} | |
3 | 1, 2 | ineq12i 4239 | . 2 ⊢ ( RefRels ∩ SymRels ) = ({𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟}) |
4 | inrab 4335 | . 2 ⊢ ({𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} ∩ {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟}) = {𝑟 ∈ Rels ∣ (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} | |
5 | symrefref2 38519 | . . . 4 ⊢ (◡𝑟 ⊆ 𝑟 → (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ↔ ( I ↾ dom 𝑟) ⊆ 𝑟)) | |
6 | 5 | pm5.32ri 575 | . . 3 ⊢ ((( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ↔ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)) |
7 | 6 | rabbii 3449 | . 2 ⊢ {𝑟 ∈ Rels ∣ (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} |
8 | 3, 4, 7 | 3eqtri 2772 | 1 ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 {crab 3443 ∩ cin 3975 ⊆ wss 3976 I cid 5592 × cxp 5698 ◡ccnv 5699 dom cdm 5700 ran crn 5701 ↾ cres 5702 Rels crels 38137 RefRels crefrels 38140 SymRels csymrels 38146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-rels 38441 df-ssr 38454 df-refs 38466 df-refrels 38467 df-syms 38498 df-symrels 38499 |
This theorem is referenced by: refsymrels3 38522 elrefsymrels2 38525 dfeqvrels2 38544 refrelsredund4 38588 |
Copyright terms: Public domain | W3C validator |