| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > t1t0 | Structured version Visualization version GIF version | ||
| Description: A T1 space is a T0 space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| Ref | Expression |
|---|---|
| t1t0 | ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t1top 23224 | . . 3 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) | |
| 2 | toptopon2 22812 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 4 | biimp 215 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜)) | |
| 5 | 4 | ralimi 3067 | . . . . . . 7 ⊢ (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜)) |
| 6 | 5 | imim1i 63 | . . . . . 6 ⊢ ((∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) → (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)) |
| 7 | 6 | ralimi 3067 | . . . . 5 ⊢ (∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) → ∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)) |
| 8 | 7 | ralimi 3067 | . . . 4 ⊢ (∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) → ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)) |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) → ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) |
| 10 | ist1-2 23241 | . . 3 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | |
| 11 | ist0-2 23238 | . . 3 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | |
| 12 | 9, 10, 11 | 3imtr4d 294 | . 2 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝐽 ∈ Fre → 𝐽 ∈ Kol2)) |
| 13 | 3, 12 | mpcom 38 | 1 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∀wral 3045 ∪ cuni 4874 ‘cfv 6514 Topctop 22787 TopOnctopon 22804 Kol2ct0 23200 Frect1 23201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-topgen 17413 df-top 22788 df-topon 22805 df-cld 22913 df-t0 23207 df-t1 23208 |
| This theorem is referenced by: t1r0 23715 ist1-5 23716 ishaus3 23717 reghaus 23719 nrmhaus 23720 tgpt0 24013 |
| Copyright terms: Public domain | W3C validator |