| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > t1t0 | Structured version Visualization version GIF version | ||
| Description: A T1 space is a T0 space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| Ref | Expression |
|---|---|
| t1t0 | ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t1top 23273 | . . 3 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) | |
| 2 | toptopon2 22861 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 4 | biimp 215 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜)) | |
| 5 | 4 | ralimi 3074 | . . . . . . 7 ⊢ (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜)) |
| 6 | 5 | imim1i 63 | . . . . . 6 ⊢ ((∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) → (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)) |
| 7 | 6 | ralimi 3074 | . . . . 5 ⊢ (∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) → ∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)) |
| 8 | 7 | ralimi 3074 | . . . 4 ⊢ (∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) → ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)) |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) → ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) |
| 10 | ist1-2 23290 | . . 3 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | |
| 11 | ist0-2 23287 | . . 3 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | |
| 12 | 9, 10, 11 | 3imtr4d 294 | . 2 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝐽 ∈ Fre → 𝐽 ∈ Kol2)) |
| 13 | 3, 12 | mpcom 38 | 1 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∀wral 3052 ∪ cuni 4888 ‘cfv 6536 Topctop 22836 TopOnctopon 22853 Kol2ct0 23249 Frect1 23250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-topgen 17462 df-top 22837 df-topon 22854 df-cld 22962 df-t0 23256 df-t1 23257 |
| This theorem is referenced by: t1r0 23764 ist1-5 23765 ishaus3 23766 reghaus 23768 nrmhaus 23769 tgpt0 24062 |
| Copyright terms: Public domain | W3C validator |