MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1t0 Structured version   Visualization version   GIF version

Theorem t1t0 23233
Description: A T1 space is a T0 space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
t1t0 (𝐽 ∈ Fre → 𝐽 ∈ Kol2)

Proof of Theorem t1t0
Dummy variables 𝑥 𝑦 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 t1top 23215 . . 3 (𝐽 ∈ Fre → 𝐽 ∈ Top)
2 toptopon2 22803 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
31, 2sylib 218 . 2 (𝐽 ∈ Fre → 𝐽 ∈ (TopOn‘ 𝐽))
4 biimp 215 . . . . . . . 8 ((𝑥𝑜𝑦𝑜) → (𝑥𝑜𝑦𝑜))
54ralimi 3066 . . . . . . 7 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))
65imim1i 63 . . . . . 6 ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) → (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
76ralimi 3066 . . . . 5 (∀𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) → ∀𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
87ralimi 3066 . . . 4 (∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) → ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
98a1i 11 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) → ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
10 ist1-2 23232 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Fre ↔ ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
11 ist0-2 23229 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Kol2 ↔ ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
129, 10, 113imtr4d 294 . 2 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Fre → 𝐽 ∈ Kol2))
133, 12mpcom 38 1 (𝐽 ∈ Fre → 𝐽 ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wral 3044   cuni 4858  cfv 6482  Topctop 22778  TopOnctopon 22795  Kol2ct0 23191  Frect1 23192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-topgen 17347  df-top 22779  df-topon 22796  df-cld 22904  df-t0 23198  df-t1 23199
This theorem is referenced by:  t1r0  23706  ist1-5  23707  ishaus3  23708  reghaus  23710  nrmhaus  23711  tgpt0  24004
  Copyright terms: Public domain W3C validator