MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1t0 Structured version   Visualization version   GIF version

Theorem t1t0 22499
Description: A T1 space is a T0 space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
t1t0 (𝐽 ∈ Fre → 𝐽 ∈ Kol2)

Proof of Theorem t1t0
Dummy variables 𝑥 𝑦 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 t1top 22481 . . 3 (𝐽 ∈ Fre → 𝐽 ∈ Top)
2 toptopon2 22067 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
31, 2sylib 217 . 2 (𝐽 ∈ Fre → 𝐽 ∈ (TopOn‘ 𝐽))
4 biimp 214 . . . . . . . 8 ((𝑥𝑜𝑦𝑜) → (𝑥𝑜𝑦𝑜))
54ralimi 3087 . . . . . . 7 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))
65imim1i 63 . . . . . 6 ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) → (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
76ralimi 3087 . . . . 5 (∀𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) → ∀𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
87ralimi 3087 . . . 4 (∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) → ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
98a1i 11 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) → ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
10 ist1-2 22498 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Fre ↔ ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
11 ist0-2 22495 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Kol2 ↔ ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
129, 10, 113imtr4d 294 . 2 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Fre → 𝐽 ∈ Kol2))
133, 12mpcom 38 1 (𝐽 ∈ Fre → 𝐽 ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  wral 3064   cuni 4839  cfv 6433  Topctop 22042  TopOnctopon 22059  Kol2ct0 22457  Frect1 22458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-topgen 17154  df-top 22043  df-topon 22060  df-cld 22170  df-t0 22464  df-t1 22465
This theorem is referenced by:  t1r0  22972  ist1-5  22973  ishaus3  22974  reghaus  22976  nrmhaus  22977  tgpt0  23270
  Copyright terms: Public domain W3C validator