MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1t0 Structured version   Visualization version   GIF version

Theorem t1t0 23211
Description: A T1 space is a T0 space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
t1t0 (𝐽 ∈ Fre → 𝐽 ∈ Kol2)

Proof of Theorem t1t0
Dummy variables 𝑥 𝑦 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 t1top 23193 . . 3 (𝐽 ∈ Fre → 𝐽 ∈ Top)
2 toptopon2 22781 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
31, 2sylib 218 . 2 (𝐽 ∈ Fre → 𝐽 ∈ (TopOn‘ 𝐽))
4 biimp 215 . . . . . . . 8 ((𝑥𝑜𝑦𝑜) → (𝑥𝑜𝑦𝑜))
54ralimi 3066 . . . . . . 7 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))
65imim1i 63 . . . . . 6 ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) → (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
76ralimi 3066 . . . . 5 (∀𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) → ∀𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
87ralimi 3066 . . . 4 (∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) → ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
98a1i 11 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) → ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
10 ist1-2 23210 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Fre ↔ ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
11 ist0-2 23207 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Kol2 ↔ ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
129, 10, 113imtr4d 294 . 2 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Fre → 𝐽 ∈ Kol2))
133, 12mpcom 38 1 (𝐽 ∈ Fre → 𝐽 ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wral 3044   cuni 4867  cfv 6499  Topctop 22756  TopOnctopon 22773  Kol2ct0 23169  Frect1 23170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-topgen 17382  df-top 22757  df-topon 22774  df-cld 22882  df-t0 23176  df-t1 23177
This theorem is referenced by:  t1r0  23684  ist1-5  23685  ishaus3  23686  reghaus  23688  nrmhaus  23689  tgpt0  23982
  Copyright terms: Public domain W3C validator