| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > t1t0 | Structured version Visualization version GIF version | ||
| Description: A T1 space is a T0 space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| Ref | Expression |
|---|---|
| t1t0 | ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t1top 23245 | . . 3 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) | |
| 2 | toptopon2 22833 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 4 | biimp 215 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜)) | |
| 5 | 4 | ralimi 3069 | . . . . . . 7 ⊢ (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜)) |
| 6 | 5 | imim1i 63 | . . . . . 6 ⊢ ((∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) → (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)) |
| 7 | 6 | ralimi 3069 | . . . . 5 ⊢ (∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) → ∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)) |
| 8 | 7 | ralimi 3069 | . . . 4 ⊢ (∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) → ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)) |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) → ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) |
| 10 | ist1-2 23262 | . . 3 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | |
| 11 | ist0-2 23259 | . . 3 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | |
| 12 | 9, 10, 11 | 3imtr4d 294 | . 2 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝐽 ∈ Fre → 𝐽 ∈ Kol2)) |
| 13 | 3, 12 | mpcom 38 | 1 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 ∀wral 3047 ∪ cuni 4856 ‘cfv 6481 Topctop 22808 TopOnctopon 22825 Kol2ct0 23221 Frect1 23222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-topgen 17347 df-top 22809 df-topon 22826 df-cld 22934 df-t0 23228 df-t1 23229 |
| This theorem is referenced by: t1r0 23736 ist1-5 23737 ishaus3 23738 reghaus 23740 nrmhaus 23741 tgpt0 24034 |
| Copyright terms: Public domain | W3C validator |