MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1t0 Structured version   Visualization version   GIF version

Theorem t1t0 22199
Description: A T1 space is a T0 space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
t1t0 (𝐽 ∈ Fre → 𝐽 ∈ Kol2)

Proof of Theorem t1t0
Dummy variables 𝑥 𝑦 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 t1top 22181 . . 3 (𝐽 ∈ Fre → 𝐽 ∈ Top)
2 toptopon2 21769 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
31, 2sylib 221 . 2 (𝐽 ∈ Fre → 𝐽 ∈ (TopOn‘ 𝐽))
4 biimp 218 . . . . . . . 8 ((𝑥𝑜𝑦𝑜) → (𝑥𝑜𝑦𝑜))
54ralimi 3073 . . . . . . 7 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))
65imim1i 63 . . . . . 6 ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) → (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
76ralimi 3073 . . . . 5 (∀𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) → ∀𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
87ralimi 3073 . . . 4 (∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) → ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
98a1i 11 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) → ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
10 ist1-2 22198 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Fre ↔ ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
11 ist0-2 22195 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Kol2 ↔ ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
129, 10, 113imtr4d 297 . 2 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Fre → 𝐽 ∈ Kol2))
133, 12mpcom 38 1 (𝐽 ∈ Fre → 𝐽 ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2112  wral 3051   cuni 4805  cfv 6358  Topctop 21744  TopOnctopon 21761  Kol2ct0 22157  Frect1 22158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-iota 6316  df-fun 6360  df-fv 6366  df-topgen 16902  df-top 21745  df-topon 21762  df-cld 21870  df-t0 22164  df-t1 22165
This theorem is referenced by:  t1r0  22672  ist1-5  22673  ishaus3  22674  reghaus  22676  nrmhaus  22677  tgpt0  22970
  Copyright terms: Public domain W3C validator