|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > t1t0 | Structured version Visualization version GIF version | ||
| Description: A T1 space is a T0 space. (Contributed by Jeff Hankins, 1-Feb-2010.) | 
| Ref | Expression | 
|---|---|
| t1t0 | ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | t1top 23338 | . . 3 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) | |
| 2 | toptopon2 22924 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ (TopOn‘∪ 𝐽)) | 
| 4 | biimp 215 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜)) | |
| 5 | 4 | ralimi 3083 | . . . . . . 7 ⊢ (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜)) | 
| 6 | 5 | imim1i 63 | . . . . . 6 ⊢ ((∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) → (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)) | 
| 7 | 6 | ralimi 3083 | . . . . 5 ⊢ (∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) → ∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)) | 
| 8 | 7 | ralimi 3083 | . . . 4 ⊢ (∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) → ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)) | 
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) → ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | 
| 10 | ist1-2 23355 | . . 3 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | |
| 11 | ist0-2 23352 | . . 3 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | |
| 12 | 9, 10, 11 | 3imtr4d 294 | . 2 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝐽 ∈ Fre → 𝐽 ∈ Kol2)) | 
| 13 | 3, 12 | mpcom 38 | 1 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ∀wral 3061 ∪ cuni 4907 ‘cfv 6561 Topctop 22899 TopOnctopon 22916 Kol2ct0 23314 Frect1 23315 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-topgen 17488 df-top 22900 df-topon 22917 df-cld 23027 df-t0 23321 df-t1 23322 | 
| This theorem is referenced by: t1r0 23829 ist1-5 23830 ishaus3 23831 reghaus 23833 nrmhaus 23834 tgpt0 24127 | 
| Copyright terms: Public domain | W3C validator |