MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpcls Structured version   Visualization version   GIF version

Theorem lpcls 23393
Description: The limit points of the closure of a subset are the same as the limit points of the set in a T1 space. (Contributed by Mario Carneiro, 26-Dec-2016.)
Hypothesis
Ref Expression
lpcls.1 𝑋 = 𝐽
Assertion
Ref Expression
lpcls ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆))

Proof of Theorem lpcls
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 t1top 23359 . . . . . . 7 (𝐽 ∈ Fre → 𝐽 ∈ Top)
2 lpcls.1 . . . . . . . . . 10 𝑋 = 𝐽
32clsss3 23088 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
43ssdifssd 4170 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ 𝑋)
52clsss3 23088 . . . . . . . 8 ((𝐽 ∈ Top ∧ (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ 𝑋) → ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ⊆ 𝑋)
64, 5syldan 590 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ⊆ 𝑋)
71, 6sylan 579 . . . . . 6 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ⊆ 𝑋)
87sseld 4007 . . . . 5 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) → 𝑥𝑋))
9 ssdifss 4163 . . . . . . . . . . 11 (𝑆𝑋 → (𝑆 ∖ {𝑥}) ⊆ 𝑋)
102clscld 23076 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∈ (Clsd‘𝐽))
111, 9, 10syl2an 595 . . . . . . . . . 10 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∈ (Clsd‘𝐽))
1211adantr 480 . . . . . . . . 9 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∈ (Clsd‘𝐽))
132t1sncld 23355 . . . . . . . . . . . . 13 ((𝐽 ∈ Fre ∧ 𝑥𝑋) → {𝑥} ∈ (Clsd‘𝐽))
1413adantlr 714 . . . . . . . . . . . 12 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → {𝑥} ∈ (Clsd‘𝐽))
15 uncld 23070 . . . . . . . . . . . 12 (({𝑥} ∈ (Clsd‘𝐽) ∧ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∈ (Clsd‘𝐽)) → ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) ∈ (Clsd‘𝐽))
1614, 12, 15syl2anc 583 . . . . . . . . . . 11 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) ∈ (Clsd‘𝐽))
172sscls 23085 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → (𝑆 ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
181, 9, 17syl2an 595 . . . . . . . . . . . . 13 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑆 ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
19 ssundif 4511 . . . . . . . . . . . . 13 (𝑆 ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) ↔ (𝑆 ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
2018, 19sylibr 234 . . . . . . . . . . . 12 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → 𝑆 ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
2120adantr 480 . . . . . . . . . . 11 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → 𝑆 ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
222clsss2 23101 . . . . . . . . . . 11 ((({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))) → ((cls‘𝐽)‘𝑆) ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
2316, 21, 22syl2anc 583 . . . . . . . . . 10 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ((cls‘𝐽)‘𝑆) ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
24 ssundif 4511 . . . . . . . . . 10 (((cls‘𝐽)‘𝑆) ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) ↔ (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
2523, 24sylib 218 . . . . . . . . 9 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
262clsss2 23101 . . . . . . . . 9 ((((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∈ (Clsd‘𝐽) ∧ (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) → ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
2712, 25, 26syl2anc 583 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
2827sseld 4007 . . . . . . 7 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
2928ex 412 . . . . . 6 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥𝑋 → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))))
3029com23 86 . . . . 5 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) → (𝑥𝑋𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))))
318, 30mpdd 43 . . . 4 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
321adantr 480 . . . . . 6 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → 𝐽 ∈ Top)
331, 3sylan 579 . . . . . . 7 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
3433ssdifssd 4170 . . . . . 6 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ 𝑋)
352sscls 23085 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
361, 35sylan 579 . . . . . . 7 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
3736ssdifd 4168 . . . . . 6 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑆 ∖ {𝑥}) ⊆ (((cls‘𝐽)‘𝑆) ∖ {𝑥}))
382clsss 23083 . . . . . 6 ((𝐽 ∈ Top ∧ (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ 𝑋 ∧ (𝑆 ∖ {𝑥}) ⊆ (((cls‘𝐽)‘𝑆) ∖ {𝑥})) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})))
3932, 34, 37, 38syl3anc 1371 . . . . 5 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})))
4039sseld 4007 . . . 4 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥}))))
4131, 40impbid 212 . . 3 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
422islp 23169 . . . . 5 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑆) ⊆ 𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ 𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥}))))
433, 42syldan 590 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ 𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥}))))
441, 43sylan 579 . . 3 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ 𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥}))))
452islp 23169 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
461, 45sylan 579 . . 3 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
4741, 44, 463bitr4d 311 . 2 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ 𝑥 ∈ ((limPt‘𝐽)‘𝑆)))
4847eqrdv 2738 1 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cdif 3973  cun 3974  wss 3976  {csn 4648   cuni 4931  cfv 6573  Topctop 22920  Clsdccld 23045  clsccl 23047  limPtclp 23163  Frect1 23336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-top 22921  df-cld 23048  df-cls 23050  df-lp 23165  df-t1 23343
This theorem is referenced by:  perfcls  23394
  Copyright terms: Public domain W3C validator