MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpcls Structured version   Visualization version   GIF version

Theorem lpcls 22543
Description: The limit points of the closure of a subset are the same as the limit points of the set in a T1 space. (Contributed by Mario Carneiro, 26-Dec-2016.)
Hypothesis
Ref Expression
lpcls.1 𝑋 = 𝐽
Assertion
Ref Expression
lpcls ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆))

Proof of Theorem lpcls
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 t1top 22509 . . . . . . 7 (𝐽 ∈ Fre → 𝐽 ∈ Top)
2 lpcls.1 . . . . . . . . . 10 𝑋 = 𝐽
32clsss3 22238 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
43ssdifssd 4080 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ 𝑋)
52clsss3 22238 . . . . . . . 8 ((𝐽 ∈ Top ∧ (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ 𝑋) → ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ⊆ 𝑋)
64, 5syldan 590 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ⊆ 𝑋)
71, 6sylan 579 . . . . . 6 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ⊆ 𝑋)
87sseld 3922 . . . . 5 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) → 𝑥𝑋))
9 ssdifss 4073 . . . . . . . . . . 11 (𝑆𝑋 → (𝑆 ∖ {𝑥}) ⊆ 𝑋)
102clscld 22226 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∈ (Clsd‘𝐽))
111, 9, 10syl2an 595 . . . . . . . . . 10 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∈ (Clsd‘𝐽))
1211adantr 480 . . . . . . . . 9 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∈ (Clsd‘𝐽))
132t1sncld 22505 . . . . . . . . . . . . 13 ((𝐽 ∈ Fre ∧ 𝑥𝑋) → {𝑥} ∈ (Clsd‘𝐽))
1413adantlr 711 . . . . . . . . . . . 12 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → {𝑥} ∈ (Clsd‘𝐽))
15 uncld 22220 . . . . . . . . . . . 12 (({𝑥} ∈ (Clsd‘𝐽) ∧ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∈ (Clsd‘𝐽)) → ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) ∈ (Clsd‘𝐽))
1614, 12, 15syl2anc 583 . . . . . . . . . . 11 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) ∈ (Clsd‘𝐽))
172sscls 22235 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → (𝑆 ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
181, 9, 17syl2an 595 . . . . . . . . . . . . 13 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑆 ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
19 ssundif 4421 . . . . . . . . . . . . 13 (𝑆 ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) ↔ (𝑆 ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
2018, 19sylibr 233 . . . . . . . . . . . 12 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → 𝑆 ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
2120adantr 480 . . . . . . . . . . 11 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → 𝑆 ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
222clsss2 22251 . . . . . . . . . . 11 ((({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))) → ((cls‘𝐽)‘𝑆) ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
2316, 21, 22syl2anc 583 . . . . . . . . . 10 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ((cls‘𝐽)‘𝑆) ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
24 ssundif 4421 . . . . . . . . . 10 (((cls‘𝐽)‘𝑆) ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) ↔ (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
2523, 24sylib 217 . . . . . . . . 9 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
262clsss2 22251 . . . . . . . . 9 ((((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∈ (Clsd‘𝐽) ∧ (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) → ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
2712, 25, 26syl2anc 583 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
2827sseld 3922 . . . . . . 7 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
2928ex 412 . . . . . 6 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥𝑋 → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))))
3029com23 86 . . . . 5 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) → (𝑥𝑋𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))))
318, 30mpdd 43 . . . 4 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
321adantr 480 . . . . . 6 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → 𝐽 ∈ Top)
331, 3sylan 579 . . . . . . 7 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
3433ssdifssd 4080 . . . . . 6 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ 𝑋)
352sscls 22235 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
361, 35sylan 579 . . . . . . 7 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
3736ssdifd 4078 . . . . . 6 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑆 ∖ {𝑥}) ⊆ (((cls‘𝐽)‘𝑆) ∖ {𝑥}))
382clsss 22233 . . . . . 6 ((𝐽 ∈ Top ∧ (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ 𝑋 ∧ (𝑆 ∖ {𝑥}) ⊆ (((cls‘𝐽)‘𝑆) ∖ {𝑥})) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})))
3932, 34, 37, 38syl3anc 1369 . . . . 5 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})))
4039sseld 3922 . . . 4 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥}))))
4131, 40impbid 211 . . 3 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
422islp 22319 . . . . 5 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑆) ⊆ 𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ 𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥}))))
433, 42syldan 590 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ 𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥}))))
441, 43sylan 579 . . 3 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ 𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥}))))
452islp 22319 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
461, 45sylan 579 . . 3 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
4741, 44, 463bitr4d 310 . 2 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ 𝑥 ∈ ((limPt‘𝐽)‘𝑆)))
4847eqrdv 2731 1 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1537  wcel 2101  cdif 3886  cun 3887  wss 3889  {csn 4564   cuni 4841  cfv 6447  Topctop 22070  Clsdccld 22195  clsccl 22197  limPtclp 22313  Frect1 22486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-iin 4930  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-top 22071  df-cld 22198  df-cls 22200  df-lp 22315  df-t1 22493
This theorem is referenced by:  perfcls  22544
  Copyright terms: Public domain W3C validator