Step | Hyp | Ref
| Expression |
1 | | t1top 22227 |
. . . . . . 7
⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) |
2 | | lpcls.1 |
. . . . . . . . . 10
⊢ 𝑋 = ∪
𝐽 |
3 | 2 | clsss3 21956 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
4 | 3 | ssdifssd 4057 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ 𝑋) |
5 | 2 | clsss3 21956 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧
(((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ 𝑋) → ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ⊆ 𝑋) |
6 | 4, 5 | syldan 594 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ⊆ 𝑋) |
7 | 1, 6 | sylan 583 |
. . . . . 6
⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ⊆ 𝑋) |
8 | 7 | sseld 3900 |
. . . . 5
⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) → 𝑥 ∈ 𝑋)) |
9 | | ssdifss 4050 |
. . . . . . . . . . 11
⊢ (𝑆 ⊆ 𝑋 → (𝑆 ∖ {𝑥}) ⊆ 𝑋) |
10 | 2 | clscld 21944 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∈ (Clsd‘𝐽)) |
11 | 1, 9, 10 | syl2an 599 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∈ (Clsd‘𝐽)) |
12 | 11 | adantr 484 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∈ (Clsd‘𝐽)) |
13 | 2 | t1sncld 22223 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Fre ∧ 𝑥 ∈ 𝑋) → {𝑥} ∈ (Clsd‘𝐽)) |
14 | 13 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → {𝑥} ∈ (Clsd‘𝐽)) |
15 | | uncld 21938 |
. . . . . . . . . . . 12
⊢ (({𝑥} ∈ (Clsd‘𝐽) ∧ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∈ (Clsd‘𝐽)) → ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) ∈ (Clsd‘𝐽)) |
16 | 14, 12, 15 | syl2anc 587 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) ∈ (Clsd‘𝐽)) |
17 | 2 | sscls 21953 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → (𝑆 ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) |
18 | 1, 9, 17 | syl2an 599 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) |
19 | | ssundif 4399 |
. . . . . . . . . . . . 13
⊢ (𝑆 ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) ↔ (𝑆 ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) |
20 | 18, 19 | sylibr 237 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))) |
21 | 20 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑆 ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))) |
22 | 2 | clsss2 21969 |
. . . . . . . . . . 11
⊢ ((({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))) → ((cls‘𝐽)‘𝑆) ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))) |
23 | 16, 21, 22 | syl2anc 587 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))) |
24 | | ssundif 4399 |
. . . . . . . . . 10
⊢
(((cls‘𝐽)‘𝑆) ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) ↔ (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) |
25 | 23, 24 | sylib 221 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) |
26 | 2 | clsss2 21969 |
. . . . . . . . 9
⊢
((((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∈ (Clsd‘𝐽) ∧ (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) → ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) |
27 | 12, 25, 26 | syl2anc 587 |
. . . . . . . 8
⊢ (((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) |
28 | 27 | sseld 3900 |
. . . . . . 7
⊢ (((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))) |
29 | 28 | ex 416 |
. . . . . 6
⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ 𝑋 → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))) |
30 | 29 | com23 86 |
. . . . 5
⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) → (𝑥 ∈ 𝑋 → 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))) |
31 | 8, 30 | mpdd 43 |
. . . 4
⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))) |
32 | 1 | adantr 484 |
. . . . . 6
⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → 𝐽 ∈ Top) |
33 | 1, 3 | sylan 583 |
. . . . . . 7
⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
34 | 33 | ssdifssd 4057 |
. . . . . 6
⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ 𝑋) |
35 | 2 | sscls 21953 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
36 | 1, 35 | sylan 583 |
. . . . . . 7
⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
37 | 36 | ssdifd 4055 |
. . . . . 6
⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∖ {𝑥}) ⊆ (((cls‘𝐽)‘𝑆) ∖ {𝑥})) |
38 | 2 | clsss 21951 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧
(((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ 𝑋 ∧ (𝑆 ∖ {𝑥}) ⊆ (((cls‘𝐽)‘𝑆) ∖ {𝑥})) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥}))) |
39 | 32, 34, 37, 38 | syl3anc 1373 |
. . . . 5
⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥}))) |
40 | 39 | sseld 3900 |
. . . 4
⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})))) |
41 | 31, 40 | impbid 215 |
. . 3
⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))) |
42 | 2 | islp 22037 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧
((cls‘𝐽)‘𝑆) ⊆ 𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ 𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})))) |
43 | 3, 42 | syldan 594 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ 𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})))) |
44 | 1, 43 | sylan 583 |
. . 3
⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ 𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})))) |
45 | 2 | islp 22037 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))) |
46 | 1, 45 | sylan 583 |
. . 3
⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))) |
47 | 41, 44, 46 | 3bitr4d 314 |
. 2
⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ 𝑥 ∈ ((limPt‘𝐽)‘𝑆))) |
48 | 47 | eqrdv 2735 |
1
⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆)) |