MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfcls Structured version   Visualization version   GIF version

Theorem perfcls 23273
Description: A subset of a perfect space is perfect iff its closure is perfect (and the closure is an actual perfect set, since it is both closed and perfect in the subspace topology). (Contributed by Mario Carneiro, 26-Dec-2016.)
Hypothesis
Ref Expression
lpcls.1 𝑋 = 𝐽
Assertion
Ref Expression
perfcls ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Perf ↔ (𝐽t ((cls‘𝐽)‘𝑆)) ∈ Perf))

Proof of Theorem perfcls
StepHypRef Expression
1 lpcls.1 . . . . 5 𝑋 = 𝐽
21lpcls 23272 . . . 4 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆))
32sseq2d 3965 . . 3 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ ((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘𝑆)))
4 t1top 23238 . . . . . 6 (𝐽 ∈ Fre → 𝐽 ∈ Top)
51clslp 23056 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))
64, 5sylan 580 . . . . 5 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))
76sseq1d 3964 . . . 4 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘𝑆) ↔ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ⊆ ((limPt‘𝐽)‘𝑆)))
8 ssequn1 4134 . . . . 5 (𝑆 ⊆ ((limPt‘𝐽)‘𝑆) ↔ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆))
9 ssun2 4127 . . . . . 6 ((limPt‘𝐽)‘𝑆) ⊆ (𝑆 ∪ ((limPt‘𝐽)‘𝑆))
10 eqss 3948 . . . . . 6 ((𝑆 ∪ ((limPt‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆) ↔ ((𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ⊆ ((limPt‘𝐽)‘𝑆) ∧ ((limPt‘𝐽)‘𝑆) ⊆ (𝑆 ∪ ((limPt‘𝐽)‘𝑆))))
119, 10mpbiran2 710 . . . . 5 ((𝑆 ∪ ((limPt‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆) ↔ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ⊆ ((limPt‘𝐽)‘𝑆))
128, 11bitri 275 . . . 4 (𝑆 ⊆ ((limPt‘𝐽)‘𝑆) ↔ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ⊆ ((limPt‘𝐽)‘𝑆))
137, 12bitr4di 289 . . 3 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆)))
143, 13bitr2d 280 . 2 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑆 ⊆ ((limPt‘𝐽)‘𝑆) ↔ ((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆))))
15 eqid 2730 . . . 4 (𝐽t 𝑆) = (𝐽t 𝑆)
161, 15restperf 23092 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Perf ↔ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆)))
174, 16sylan 580 . 2 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Perf ↔ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆)))
181clsss3 22967 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
19 eqid 2730 . . . . 5 (𝐽t ((cls‘𝐽)‘𝑆)) = (𝐽t ((cls‘𝐽)‘𝑆))
201, 19restperf 23092 . . . 4 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑆) ⊆ 𝑋) → ((𝐽t ((cls‘𝐽)‘𝑆)) ∈ Perf ↔ ((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆))))
2118, 20syldan 591 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐽t ((cls‘𝐽)‘𝑆)) ∈ Perf ↔ ((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆))))
224, 21sylan 580 . 2 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((𝐽t ((cls‘𝐽)‘𝑆)) ∈ Perf ↔ ((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆))))
2314, 17, 223bitr4d 311 1 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Perf ↔ (𝐽t ((cls‘𝐽)‘𝑆)) ∈ Perf))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  cun 3898  wss 3900   cuni 4857  cfv 6477  (class class class)co 7341  t crest 17316  Topctop 22801  clsccl 22926  limPtclp 23042  Perfcperf 23043  Frect1 23215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-en 8865  df-fin 8868  df-fi 9290  df-rest 17318  df-topgen 17339  df-top 22802  df-topon 22819  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-lp 23044  df-perf 23045  df-t1 23222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator