| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > perfcls | Structured version Visualization version GIF version | ||
| Description: A subset of a perfect space is perfect iff its closure is perfect (and the closure is an actual perfect set, since it is both closed and perfect in the subspace topology). (Contributed by Mario Carneiro, 26-Dec-2016.) |
| Ref | Expression |
|---|---|
| lpcls.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| perfcls | ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Perf ↔ (𝐽 ↾t ((cls‘𝐽)‘𝑆)) ∈ Perf)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpcls.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | lpcls 23251 | . . . 4 ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆)) |
| 3 | 2 | sseq2d 3979 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → (((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ ((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘𝑆))) |
| 4 | t1top 23217 | . . . . . 6 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) | |
| 5 | 1 | clslp 23035 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆))) |
| 6 | 4, 5 | sylan 580 | . . . . 5 ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆))) |
| 7 | 6 | sseq1d 3978 | . . . 4 ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → (((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘𝑆) ↔ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ⊆ ((limPt‘𝐽)‘𝑆))) |
| 8 | ssequn1 4149 | . . . . 5 ⊢ (𝑆 ⊆ ((limPt‘𝐽)‘𝑆) ↔ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆)) | |
| 9 | ssun2 4142 | . . . . . 6 ⊢ ((limPt‘𝐽)‘𝑆) ⊆ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) | |
| 10 | eqss 3962 | . . . . . 6 ⊢ ((𝑆 ∪ ((limPt‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆) ↔ ((𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ⊆ ((limPt‘𝐽)‘𝑆) ∧ ((limPt‘𝐽)‘𝑆) ⊆ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))) | |
| 11 | 9, 10 | mpbiran2 710 | . . . . 5 ⊢ ((𝑆 ∪ ((limPt‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆) ↔ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ⊆ ((limPt‘𝐽)‘𝑆)) |
| 12 | 8, 11 | bitri 275 | . . . 4 ⊢ (𝑆 ⊆ ((limPt‘𝐽)‘𝑆) ↔ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ⊆ ((limPt‘𝐽)‘𝑆)) |
| 13 | 7, 12 | bitr4di 289 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → (((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆))) |
| 14 | 3, 13 | bitr2d 280 | . 2 ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → (𝑆 ⊆ ((limPt‘𝐽)‘𝑆) ↔ ((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)))) |
| 15 | eqid 2729 | . . . 4 ⊢ (𝐽 ↾t 𝑆) = (𝐽 ↾t 𝑆) | |
| 16 | 1, 15 | restperf 23071 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Perf ↔ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆))) |
| 17 | 4, 16 | sylan 580 | . 2 ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Perf ↔ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆))) |
| 18 | 1 | clsss3 22946 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
| 19 | eqid 2729 | . . . . 5 ⊢ (𝐽 ↾t ((cls‘𝐽)‘𝑆)) = (𝐽 ↾t ((cls‘𝐽)‘𝑆)) | |
| 20 | 1, 19 | restperf 23071 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑆) ⊆ 𝑋) → ((𝐽 ↾t ((cls‘𝐽)‘𝑆)) ∈ Perf ↔ ((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)))) |
| 21 | 18, 20 | syldan 591 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t ((cls‘𝐽)‘𝑆)) ∈ Perf ↔ ((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)))) |
| 22 | 4, 21 | sylan 580 | . 2 ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t ((cls‘𝐽)‘𝑆)) ∈ Perf ↔ ((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)))) |
| 23 | 14, 17, 22 | 3bitr4d 311 | 1 ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Perf ↔ (𝐽 ↾t ((cls‘𝐽)‘𝑆)) ∈ Perf)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 ⊆ wss 3914 ∪ cuni 4871 ‘cfv 6511 (class class class)co 7387 ↾t crest 17383 Topctop 22780 clsccl 22905 limPtclp 23021 Perfcperf 23022 Frect1 23194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-en 8919 df-fin 8922 df-fi 9362 df-rest 17385 df-topgen 17406 df-top 22781 df-topon 22798 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-t1 23201 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |