| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > perfcls | Structured version Visualization version GIF version | ||
| Description: A subset of a perfect space is perfect iff its closure is perfect (and the closure is an actual perfect set, since it is both closed and perfect in the subspace topology). (Contributed by Mario Carneiro, 26-Dec-2016.) |
| Ref | Expression |
|---|---|
| lpcls.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| perfcls | ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Perf ↔ (𝐽 ↾t ((cls‘𝐽)‘𝑆)) ∈ Perf)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpcls.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | lpcls 23372 | . . . 4 ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆)) |
| 3 | 2 | sseq2d 4016 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → (((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ ((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘𝑆))) |
| 4 | t1top 23338 | . . . . . 6 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) | |
| 5 | 1 | clslp 23156 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆))) |
| 6 | 4, 5 | sylan 580 | . . . . 5 ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆))) |
| 7 | 6 | sseq1d 4015 | . . . 4 ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → (((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘𝑆) ↔ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ⊆ ((limPt‘𝐽)‘𝑆))) |
| 8 | ssequn1 4186 | . . . . 5 ⊢ (𝑆 ⊆ ((limPt‘𝐽)‘𝑆) ↔ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆)) | |
| 9 | ssun2 4179 | . . . . . 6 ⊢ ((limPt‘𝐽)‘𝑆) ⊆ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) | |
| 10 | eqss 3999 | . . . . . 6 ⊢ ((𝑆 ∪ ((limPt‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆) ↔ ((𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ⊆ ((limPt‘𝐽)‘𝑆) ∧ ((limPt‘𝐽)‘𝑆) ⊆ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))) | |
| 11 | 9, 10 | mpbiran2 710 | . . . . 5 ⊢ ((𝑆 ∪ ((limPt‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆) ↔ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ⊆ ((limPt‘𝐽)‘𝑆)) |
| 12 | 8, 11 | bitri 275 | . . . 4 ⊢ (𝑆 ⊆ ((limPt‘𝐽)‘𝑆) ↔ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ⊆ ((limPt‘𝐽)‘𝑆)) |
| 13 | 7, 12 | bitr4di 289 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → (((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆))) |
| 14 | 3, 13 | bitr2d 280 | . 2 ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → (𝑆 ⊆ ((limPt‘𝐽)‘𝑆) ↔ ((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)))) |
| 15 | eqid 2737 | . . . 4 ⊢ (𝐽 ↾t 𝑆) = (𝐽 ↾t 𝑆) | |
| 16 | 1, 15 | restperf 23192 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Perf ↔ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆))) |
| 17 | 4, 16 | sylan 580 | . 2 ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Perf ↔ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆))) |
| 18 | 1 | clsss3 23067 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
| 19 | eqid 2737 | . . . . 5 ⊢ (𝐽 ↾t ((cls‘𝐽)‘𝑆)) = (𝐽 ↾t ((cls‘𝐽)‘𝑆)) | |
| 20 | 1, 19 | restperf 23192 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑆) ⊆ 𝑋) → ((𝐽 ↾t ((cls‘𝐽)‘𝑆)) ∈ Perf ↔ ((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)))) |
| 21 | 18, 20 | syldan 591 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t ((cls‘𝐽)‘𝑆)) ∈ Perf ↔ ((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)))) |
| 22 | 4, 21 | sylan 580 | . 2 ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t ((cls‘𝐽)‘𝑆)) ∈ Perf ↔ ((cls‘𝐽)‘𝑆) ⊆ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)))) |
| 23 | 14, 17, 22 | 3bitr4d 311 | 1 ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Perf ↔ (𝐽 ↾t ((cls‘𝐽)‘𝑆)) ∈ Perf)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∪ cun 3949 ⊆ wss 3951 ∪ cuni 4907 ‘cfv 6561 (class class class)co 7431 ↾t crest 17465 Topctop 22899 clsccl 23026 limPtclp 23142 Perfcperf 23143 Frect1 23315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-en 8986 df-fin 8989 df-fi 9451 df-rest 17467 df-topgen 17488 df-top 22900 df-topon 22917 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-nei 23106 df-lp 23144 df-perf 23145 df-t1 23322 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |