MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1sep2 Structured version   Visualization version   GIF version

Theorem t1sep2 22220
Description: Any two points in a T1 space which have no separation are equal. (Contributed by Jeff Hankins, 1-Feb-2010.)
Hypothesis
Ref Expression
t1sep.1 𝑋 = 𝐽
Assertion
Ref Expression
t1sep2 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐵𝑋) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → 𝐴 = 𝐵))
Distinct variable groups:   𝐴,𝑜   𝐵,𝑜   𝑜,𝐽   𝑜,𝑋

Proof of Theorem t1sep2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 t1top 22181 . . . . . 6 (𝐽 ∈ Fre → 𝐽 ∈ Top)
2 t1sep.1 . . . . . . 7 𝑋 = 𝐽
32toptopon 21768 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
41, 3sylib 221 . . . . 5 (𝐽 ∈ Fre → 𝐽 ∈ (TopOn‘𝑋))
5 ist1-2 22198 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
64, 5syl 17 . . . 4 (𝐽 ∈ Fre → (𝐽 ∈ Fre ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
76ibi 270 . . 3 (𝐽 ∈ Fre → ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
8 eleq1 2818 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝑜𝐴𝑜))
98imbi1d 345 . . . . . 6 (𝑥 = 𝐴 → ((𝑥𝑜𝑦𝑜) ↔ (𝐴𝑜𝑦𝑜)))
109ralbidv 3108 . . . . 5 (𝑥 = 𝐴 → (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) ↔ ∀𝑜𝐽 (𝐴𝑜𝑦𝑜)))
11 eqeq1 2740 . . . . 5 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
1210, 11imbi12d 348 . . . 4 (𝑥 = 𝐴 → ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ (∀𝑜𝐽 (𝐴𝑜𝑦𝑜) → 𝐴 = 𝑦)))
13 eleq1 2818 . . . . . . 7 (𝑦 = 𝐵 → (𝑦𝑜𝐵𝑜))
1413imbi2d 344 . . . . . 6 (𝑦 = 𝐵 → ((𝐴𝑜𝑦𝑜) ↔ (𝐴𝑜𝐵𝑜)))
1514ralbidv 3108 . . . . 5 (𝑦 = 𝐵 → (∀𝑜𝐽 (𝐴𝑜𝑦𝑜) ↔ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))
16 eqeq2 2748 . . . . 5 (𝑦 = 𝐵 → (𝐴 = 𝑦𝐴 = 𝐵))
1715, 16imbi12d 348 . . . 4 (𝑦 = 𝐵 → ((∀𝑜𝐽 (𝐴𝑜𝑦𝑜) → 𝐴 = 𝑦) ↔ (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → 𝐴 = 𝐵)))
1812, 17rspc2v 3537 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → 𝐴 = 𝐵)))
197, 18mpan9 510 . 2 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋)) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → 𝐴 = 𝐵))
20193impb 1117 1 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐵𝑋) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051   cuni 4805  cfv 6358  Topctop 21744  TopOnctopon 21761  Frect1 22158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-iota 6316  df-fun 6360  df-fv 6366  df-topgen 16902  df-top 21745  df-topon 21762  df-cld 21870  df-t1 22165
This theorem is referenced by:  t1sep  22221  isr0  22588
  Copyright terms: Public domain W3C validator