MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1sep2 Structured version   Visualization version   GIF version

Theorem t1sep2 22520
Description: Any two points in a T1 space which have no separation are equal. (Contributed by Jeff Hankins, 1-Feb-2010.)
Hypothesis
Ref Expression
t1sep.1 𝑋 = 𝐽
Assertion
Ref Expression
t1sep2 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐵𝑋) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → 𝐴 = 𝐵))
Distinct variable groups:   𝐴,𝑜   𝐵,𝑜   𝑜,𝐽   𝑜,𝑋

Proof of Theorem t1sep2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 t1top 22481 . . . . . 6 (𝐽 ∈ Fre → 𝐽 ∈ Top)
2 t1sep.1 . . . . . . 7 𝑋 = 𝐽
32toptopon 22066 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
41, 3sylib 217 . . . . 5 (𝐽 ∈ Fre → 𝐽 ∈ (TopOn‘𝑋))
5 ist1-2 22498 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
64, 5syl 17 . . . 4 (𝐽 ∈ Fre → (𝐽 ∈ Fre ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
76ibi 266 . . 3 (𝐽 ∈ Fre → ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
8 eleq1 2826 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝑜𝐴𝑜))
98imbi1d 342 . . . . . 6 (𝑥 = 𝐴 → ((𝑥𝑜𝑦𝑜) ↔ (𝐴𝑜𝑦𝑜)))
109ralbidv 3112 . . . . 5 (𝑥 = 𝐴 → (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) ↔ ∀𝑜𝐽 (𝐴𝑜𝑦𝑜)))
11 eqeq1 2742 . . . . 5 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
1210, 11imbi12d 345 . . . 4 (𝑥 = 𝐴 → ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ (∀𝑜𝐽 (𝐴𝑜𝑦𝑜) → 𝐴 = 𝑦)))
13 eleq1 2826 . . . . . . 7 (𝑦 = 𝐵 → (𝑦𝑜𝐵𝑜))
1413imbi2d 341 . . . . . 6 (𝑦 = 𝐵 → ((𝐴𝑜𝑦𝑜) ↔ (𝐴𝑜𝐵𝑜)))
1514ralbidv 3112 . . . . 5 (𝑦 = 𝐵 → (∀𝑜𝐽 (𝐴𝑜𝑦𝑜) ↔ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))
16 eqeq2 2750 . . . . 5 (𝑦 = 𝐵 → (𝐴 = 𝑦𝐴 = 𝐵))
1715, 16imbi12d 345 . . . 4 (𝑦 = 𝐵 → ((∀𝑜𝐽 (𝐴𝑜𝑦𝑜) → 𝐴 = 𝑦) ↔ (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → 𝐴 = 𝐵)))
1812, 17rspc2v 3570 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → 𝐴 = 𝐵)))
197, 18mpan9 507 . 2 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋)) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → 𝐴 = 𝐵))
20193impb 1114 1 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐵𝑋) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064   cuni 4839  cfv 6433  Topctop 22042  TopOnctopon 22059  Frect1 22458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-topgen 17154  df-top 22043  df-topon 22060  df-cld 22170  df-t1 22465
This theorem is referenced by:  t1sep  22521  isr0  22888
  Copyright terms: Public domain W3C validator