| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > t1sep2 | Structured version Visualization version GIF version | ||
| Description: Any two points in a T1 space which have no separation are equal. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| Ref | Expression |
|---|---|
| t1sep.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| t1sep2 | ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t1top 23245 | . . . . . 6 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) | |
| 2 | t1sep.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | toptopon 22832 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 4 | 1, 3 | sylib 218 | . . . . 5 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ (TopOn‘𝑋)) |
| 5 | ist1-2 23262 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝐽 ∈ Fre → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) |
| 7 | 6 | ibi 267 | . . 3 ⊢ (𝐽 ∈ Fre → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)) |
| 8 | eleq1 2819 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜)) | |
| 9 | 8 | imbi1d 341 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) ↔ (𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜))) |
| 10 | 9 | ralbidv 3155 | . . . . 5 ⊢ (𝑥 = 𝐴 → (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) ↔ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜))) |
| 11 | eqeq1 2735 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) | |
| 12 | 10, 11 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → ((∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) ↔ (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝐴 = 𝑦))) |
| 13 | eleq1 2819 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜)) | |
| 14 | 13 | imbi2d 340 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜) ↔ (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜))) |
| 15 | 14 | ralbidv 3155 | . . . . 5 ⊢ (𝑦 = 𝐵 → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜) ↔ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜))) |
| 16 | eqeq2 2743 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐵)) | |
| 17 | 15, 16 | imbi12d 344 | . . . 4 ⊢ (𝑦 = 𝐵 → ((∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝐴 = 𝑦) ↔ (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → 𝐴 = 𝐵))) |
| 18 | 12, 17 | rspc2v 3583 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → 𝐴 = 𝐵))) |
| 19 | 7, 18 | mpan9 506 | . 2 ⊢ ((𝐽 ∈ Fre ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → 𝐴 = 𝐵)) |
| 20 | 19 | 3impb 1114 | 1 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∪ cuni 4856 ‘cfv 6481 Topctop 22808 TopOnctopon 22825 Frect1 23222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-topgen 17347 df-top 22809 df-topon 22826 df-cld 22934 df-t1 23229 |
| This theorem is referenced by: t1sep 23285 isr0 23652 |
| Copyright terms: Public domain | W3C validator |