MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restt1 Structured version   Visualization version   GIF version

Theorem restt1 23305
Description: A subspace of a T1 topology is T1. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
restt1 ((𝐽 ∈ Fre ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Fre)

Proof of Theorem restt1
StepHypRef Expression
1 t1top 23268 . 2 (𝐽 ∈ Fre → 𝐽 ∈ Top)
2 cnt1 23288 . 2 ((𝐽 ∈ Fre ∧ ( I ↾ (𝐴 𝐽)):(𝐴 𝐽)–1-1→(𝐴 𝐽) ∧ ( I ↾ (𝐴 𝐽)) ∈ ((𝐽t 𝐴) Cn 𝐽)) → (𝐽t 𝐴) ∈ Fre)
31, 2resthauslem 23301 1 ((𝐽 ∈ Fre ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Fre)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cin 3925   cuni 4883   I cid 5547  cres 5656  (class class class)co 7405  t crest 17434  Frect1 23245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-map 8842  df-en 8960  df-fin 8963  df-fi 9423  df-rest 17436  df-topgen 17457  df-top 22832  df-topon 22849  df-bases 22884  df-cld 22957  df-cn 23165  df-t1 23252
This theorem is referenced by:  poimirlem30  37674
  Copyright terms: Public domain W3C validator