MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restt1 Structured version   Visualization version   GIF version

Theorem restt1 21976
Description: A subspace of a T1 topology is T1. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
restt1 ((𝐽 ∈ Fre ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Fre)

Proof of Theorem restt1
StepHypRef Expression
1 t1top 21939 . 2 (𝐽 ∈ Fre → 𝐽 ∈ Top)
2 cnt1 21959 . 2 ((𝐽 ∈ Fre ∧ ( I ↾ (𝐴 𝐽)):(𝐴 𝐽)–1-1→(𝐴 𝐽) ∧ ( I ↾ (𝐴 𝐽)) ∈ ((𝐽t 𝐴) Cn 𝐽)) → (𝐽t 𝐴) ∈ Fre)
31, 2resthauslem 21972 1 ((𝐽 ∈ Fre ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Fre)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2112  cin 3883   cuni 4803   I cid 5427  cres 5525  (class class class)co 7139  t crest 16690  Frect1 21916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-fin 8500  df-fi 8863  df-rest 16692  df-topgen 16713  df-top 21503  df-topon 21520  df-bases 21555  df-cld 21628  df-cn 21836  df-t1 21923
This theorem is referenced by:  poimirlem30  35086
  Copyright terms: Public domain W3C validator