MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnconn22 Structured version   Visualization version   GIF version

Theorem tgbtwnconn22 28563
Description: Double connectivity law for betweenness. (Contributed by Thierry Arnoux, 1-Dec-2019.)
Hypotheses
Ref Expression
tgbtwnconn.p 𝑃 = (Base‘𝐺)
tgbtwnconn.i 𝐼 = (Itv‘𝐺)
tgbtwnconn.g (𝜑𝐺 ∈ TarskiG)
tgbtwnconn.a (𝜑𝐴𝑃)
tgbtwnconn.b (𝜑𝐵𝑃)
tgbtwnconn.c (𝜑𝐶𝑃)
tgbtwnconn.d (𝜑𝐷𝑃)
tgbtwnconn22.e (𝜑𝐸𝑃)
tgbtwnconn22.1 (𝜑𝐴𝐵)
tgbtwnconn22.2 (𝜑𝐶𝐵)
tgbtwnconn22.3 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnconn22.4 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
tgbtwnconn22.5 (𝜑𝐵 ∈ (𝐶𝐼𝐸))
Assertion
Ref Expression
tgbtwnconn22 (𝜑𝐵 ∈ (𝐷𝐼𝐸))

Proof of Theorem tgbtwnconn22
StepHypRef Expression
1 tgbtwnconn.p . . 3 𝑃 = (Base‘𝐺)
2 eqid 2731 . . 3 (dist‘𝐺) = (dist‘𝐺)
3 tgbtwnconn.i . . 3 𝐼 = (Itv‘𝐺)
4 tgbtwnconn.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐺 ∈ TarskiG)
6 tgbtwnconn.d . . . 4 (𝜑𝐷𝑃)
76adantr 480 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐷𝑃)
8 tgbtwnconn.c . . . 4 (𝜑𝐶𝑃)
98adantr 480 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶𝑃)
10 tgbtwnconn.b . . . 4 (𝜑𝐵𝑃)
1110adantr 480 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐵𝑃)
12 tgbtwnconn22.e . . . 4 (𝜑𝐸𝑃)
1312adantr 480 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐸𝑃)
14 tgbtwnconn22.2 . . . 4 (𝜑𝐶𝐵)
1514adantr 480 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶𝐵)
16 simpr 484 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ (𝐵𝐼𝐷))
171, 2, 3, 5, 11, 9, 7, 16tgbtwncom 28472 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ (𝐷𝐼𝐵))
18 tgbtwnconn22.5 . . . 4 (𝜑𝐵 ∈ (𝐶𝐼𝐸))
1918adantr 480 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐵 ∈ (𝐶𝐼𝐸))
201, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19tgbtwnouttr2 28479 . 2 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐵 ∈ (𝐷𝐼𝐸))
214adantr 480 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐺 ∈ TarskiG)
226adantr 480 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷𝑃)
2310adantr 480 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐵𝑃)
2412adantr 480 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐸𝑃)
258adantr 480 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐶𝑃)
26 simpr 484 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷 ∈ (𝐵𝐼𝐶))
2718adantr 480 . . . 4 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐵 ∈ (𝐶𝐼𝐸))
281, 2, 3, 21, 25, 23, 24, 27tgbtwncom 28472 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐵 ∈ (𝐸𝐼𝐶))
291, 2, 3, 21, 22, 23, 24, 25, 26, 28tgbtwnintr 28477 . 2 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐵 ∈ (𝐷𝐼𝐸))
30 tgbtwnconn.a . . 3 (𝜑𝐴𝑃)
31 tgbtwnconn22.1 . . 3 (𝜑𝐴𝐵)
32 tgbtwnconn22.3 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
33 tgbtwnconn22.4 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
341, 3, 4, 30, 10, 8, 6, 31, 32, 33tgbtwnconn2 28560 . 2 (𝜑 → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶)))
3520, 29, 34mpjaodan 960 1 (𝜑𝐵 ∈ (𝐷𝐼𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cfv 6487  (class class class)co 7352  Basecbs 17126  distcds 17176  TarskiGcstrkg 28411  Itvcitv 28417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-er 8628  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9800  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-3 12195  df-n0 12388  df-xnn0 12461  df-z 12475  df-uz 12739  df-fz 13414  df-fzo 13561  df-hash 14244  df-word 14427  df-concat 14484  df-s1 14510  df-s2 14761  df-s3 14762  df-trkgc 28432  df-trkgb 28433  df-trkgcb 28434  df-trkg 28437  df-cgrg 28495
This theorem is referenced by:  mideulem2  28718  flatcgra  28808
  Copyright terms: Public domain W3C validator