MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnconn22 Structured version   Visualization version   GIF version

Theorem tgbtwnconn22 26670
Description: Double connectivity law for betweenness. (Contributed by Thierry Arnoux, 1-Dec-2019.)
Hypotheses
Ref Expression
tgbtwnconn.p 𝑃 = (Base‘𝐺)
tgbtwnconn.i 𝐼 = (Itv‘𝐺)
tgbtwnconn.g (𝜑𝐺 ∈ TarskiG)
tgbtwnconn.a (𝜑𝐴𝑃)
tgbtwnconn.b (𝜑𝐵𝑃)
tgbtwnconn.c (𝜑𝐶𝑃)
tgbtwnconn.d (𝜑𝐷𝑃)
tgbtwnconn22.e (𝜑𝐸𝑃)
tgbtwnconn22.1 (𝜑𝐴𝐵)
tgbtwnconn22.2 (𝜑𝐶𝐵)
tgbtwnconn22.3 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnconn22.4 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
tgbtwnconn22.5 (𝜑𝐵 ∈ (𝐶𝐼𝐸))
Assertion
Ref Expression
tgbtwnconn22 (𝜑𝐵 ∈ (𝐷𝐼𝐸))

Proof of Theorem tgbtwnconn22
StepHypRef Expression
1 tgbtwnconn.p . . 3 𝑃 = (Base‘𝐺)
2 eqid 2737 . . 3 (dist‘𝐺) = (dist‘𝐺)
3 tgbtwnconn.i . . 3 𝐼 = (Itv‘𝐺)
4 tgbtwnconn.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 484 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐺 ∈ TarskiG)
6 tgbtwnconn.d . . . 4 (𝜑𝐷𝑃)
76adantr 484 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐷𝑃)
8 tgbtwnconn.c . . . 4 (𝜑𝐶𝑃)
98adantr 484 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶𝑃)
10 tgbtwnconn.b . . . 4 (𝜑𝐵𝑃)
1110adantr 484 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐵𝑃)
12 tgbtwnconn22.e . . . 4 (𝜑𝐸𝑃)
1312adantr 484 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐸𝑃)
14 tgbtwnconn22.2 . . . 4 (𝜑𝐶𝐵)
1514adantr 484 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶𝐵)
16 simpr 488 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ (𝐵𝐼𝐷))
171, 2, 3, 5, 11, 9, 7, 16tgbtwncom 26579 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ (𝐷𝐼𝐵))
18 tgbtwnconn22.5 . . . 4 (𝜑𝐵 ∈ (𝐶𝐼𝐸))
1918adantr 484 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐵 ∈ (𝐶𝐼𝐸))
201, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19tgbtwnouttr2 26586 . 2 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐵 ∈ (𝐷𝐼𝐸))
214adantr 484 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐺 ∈ TarskiG)
226adantr 484 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷𝑃)
2310adantr 484 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐵𝑃)
2412adantr 484 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐸𝑃)
258adantr 484 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐶𝑃)
26 simpr 488 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷 ∈ (𝐵𝐼𝐶))
2718adantr 484 . . . 4 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐵 ∈ (𝐶𝐼𝐸))
281, 2, 3, 21, 25, 23, 24, 27tgbtwncom 26579 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐵 ∈ (𝐸𝐼𝐶))
291, 2, 3, 21, 22, 23, 24, 25, 26, 28tgbtwnintr 26584 . 2 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐵 ∈ (𝐷𝐼𝐸))
30 tgbtwnconn.a . . 3 (𝜑𝐴𝑃)
31 tgbtwnconn22.1 . . 3 (𝜑𝐴𝐵)
32 tgbtwnconn22.3 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
33 tgbtwnconn22.4 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
341, 3, 4, 30, 10, 8, 6, 31, 32, 33tgbtwnconn2 26667 . 2 (𝜑 → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶)))
3520, 29, 34mpjaodan 959 1 (𝜑𝐵 ∈ (𝐷𝐼𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2940  cfv 6380  (class class class)co 7213  Basecbs 16760  distcds 16811  TarskiGcstrkg 26521  Itvcitv 26527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-er 8391  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-xnn0 12163  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-hash 13897  df-word 14070  df-concat 14126  df-s1 14153  df-s2 14413  df-s3 14414  df-trkgc 26539  df-trkgb 26540  df-trkgcb 26541  df-trkg 26544  df-cgrg 26602
This theorem is referenced by:  mideulem2  26825  flatcgra  26915
  Copyright terms: Public domain W3C validator