MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnexch3 Structured version   Visualization version   GIF version

Theorem tgbtwnexch3 28522
Description: Exchange the first endpoint in betweenness. Left-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwnintr.1 (𝜑𝐴𝑃)
tgbtwnintr.2 (𝜑𝐵𝑃)
tgbtwnintr.3 (𝜑𝐶𝑃)
tgbtwnintr.4 (𝜑𝐷𝑃)
tgbtwnexch3.5 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnexch3.6 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
Assertion
Ref Expression
tgbtwnexch3 (𝜑𝐶 ∈ (𝐵𝐼𝐷))

Proof of Theorem tgbtwnexch3
StepHypRef Expression
1 tkgeom.p . 2 𝑃 = (Base‘𝐺)
2 tkgeom.d . 2 = (dist‘𝐺)
3 tkgeom.i . 2 𝐼 = (Itv‘𝐺)
4 tkgeom.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tgbtwnintr.2 . 2 (𝜑𝐵𝑃)
6 tgbtwnintr.3 . 2 (𝜑𝐶𝑃)
7 tgbtwnintr.4 . 2 (𝜑𝐷𝑃)
8 tgbtwnintr.1 . 2 (𝜑𝐴𝑃)
9 tgbtwnexch3.5 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
101, 2, 3, 4, 8, 5, 6, 9tgbtwncom 28516 . 2 (𝜑𝐵 ∈ (𝐶𝐼𝐴))
11 tgbtwnexch3.6 . . 3 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
121, 2, 3, 4, 8, 6, 7, 11tgbtwncom 28516 . 2 (𝜑𝐶 ∈ (𝐷𝐼𝐴))
131, 2, 3, 4, 5, 6, 7, 8, 10, 12tgbtwnintr 28521 1 (𝜑𝐶 ∈ (𝐵𝐼𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6575  (class class class)co 7450  Basecbs 17260  distcds 17322  TarskiGcstrkg 28455  Itvcitv 28461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6527  df-fv 6583  df-ov 7453  df-trkgc 28476  df-trkgb 28477  df-trkgcb 28478  df-trkg 28481
This theorem is referenced by:  tgbtwnouttr2  28523  tgifscgr  28536  tgcgrxfr  28546  tgbtwnconn1lem1  28600  tgbtwnconn1lem2  28601  tgbtwnconn1lem3  28602  tgbtwnconn2  28604  tgbtwnconn3  28605  btwnhl  28642  tglineeltr  28659  miriso  28698  krippenlem  28718  outpasch  28783  hlpasch  28784
  Copyright terms: Public domain W3C validator