MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnexch3 Structured version   Visualization version   GIF version

Theorem tgbtwnexch3 28421
Description: Exchange the first endpoint in betweenness. Left-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwnintr.1 (𝜑𝐴𝑃)
tgbtwnintr.2 (𝜑𝐵𝑃)
tgbtwnintr.3 (𝜑𝐶𝑃)
tgbtwnintr.4 (𝜑𝐷𝑃)
tgbtwnexch3.5 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnexch3.6 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
Assertion
Ref Expression
tgbtwnexch3 (𝜑𝐶 ∈ (𝐵𝐼𝐷))

Proof of Theorem tgbtwnexch3
StepHypRef Expression
1 tkgeom.p . 2 𝑃 = (Base‘𝐺)
2 tkgeom.d . 2 = (dist‘𝐺)
3 tkgeom.i . 2 𝐼 = (Itv‘𝐺)
4 tkgeom.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tgbtwnintr.2 . 2 (𝜑𝐵𝑃)
6 tgbtwnintr.3 . 2 (𝜑𝐶𝑃)
7 tgbtwnintr.4 . 2 (𝜑𝐷𝑃)
8 tgbtwnintr.1 . 2 (𝜑𝐴𝑃)
9 tgbtwnexch3.5 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
101, 2, 3, 4, 8, 5, 6, 9tgbtwncom 28415 . 2 (𝜑𝐵 ∈ (𝐶𝐼𝐴))
11 tgbtwnexch3.6 . . 3 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
121, 2, 3, 4, 8, 6, 7, 11tgbtwncom 28415 . 2 (𝜑𝐶 ∈ (𝐷𝐼𝐴))
131, 2, 3, 4, 5, 6, 7, 8, 10, 12tgbtwnintr 28420 1 (𝜑𝐶 ∈ (𝐵𝐼𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  distcds 17229  TarskiGcstrkg 28354  Itvcitv 28360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-trkgc 28375  df-trkgb 28376  df-trkgcb 28377  df-trkg 28380
This theorem is referenced by:  tgbtwnouttr2  28422  tgifscgr  28435  tgcgrxfr  28445  tgbtwnconn1lem1  28499  tgbtwnconn1lem2  28500  tgbtwnconn1lem3  28501  tgbtwnconn2  28503  tgbtwnconn3  28504  btwnhl  28541  tglineeltr  28558  miriso  28597  krippenlem  28617  outpasch  28682  hlpasch  28683
  Copyright terms: Public domain W3C validator