| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgbtwnexch3 | Structured version Visualization version GIF version | ||
| Description: Exchange the first endpoint in betweenness. Left-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgbtwnintr.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgbtwnintr.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgbtwnintr.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgbtwnintr.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| tgbtwnexch3.5 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
| tgbtwnexch3.6 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) |
| Ref | Expression |
|---|---|
| tgbtwnexch3 | ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tkgeom.d | . 2 ⊢ − = (dist‘𝐺) | |
| 3 | tkgeom.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tkgeom.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | tgbtwnintr.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 6 | tgbtwnintr.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 7 | tgbtwnintr.4 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 8 | tgbtwnintr.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 9 | tgbtwnexch3.5 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
| 10 | 1, 2, 3, 4, 8, 5, 6, 9 | tgbtwncom 28432 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) |
| 11 | tgbtwnexch3.6 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) | |
| 12 | 1, 2, 3, 4, 8, 6, 7, 11 | tgbtwncom 28432 | . 2 ⊢ (𝜑 → 𝐶 ∈ (𝐷𝐼𝐴)) |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 12 | tgbtwnintr 28437 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 distcds 17282 TarskiGcstrkg 28371 Itvcitv 28377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5286 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ov 7416 df-trkgc 28392 df-trkgb 28393 df-trkgcb 28394 df-trkg 28397 |
| This theorem is referenced by: tgbtwnouttr2 28439 tgifscgr 28452 tgcgrxfr 28462 tgbtwnconn1lem1 28516 tgbtwnconn1lem2 28517 tgbtwnconn1lem3 28518 tgbtwnconn2 28520 tgbtwnconn3 28521 btwnhl 28558 tglineeltr 28575 miriso 28614 krippenlem 28634 outpasch 28699 hlpasch 28700 |
| Copyright terms: Public domain | W3C validator |