MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnexch3 Structured version   Visualization version   GIF version

Theorem tgbtwnexch3 26759
Description: Exchange the first endpoint in betweenness. Left-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwnintr.1 (𝜑𝐴𝑃)
tgbtwnintr.2 (𝜑𝐵𝑃)
tgbtwnintr.3 (𝜑𝐶𝑃)
tgbtwnintr.4 (𝜑𝐷𝑃)
tgbtwnexch3.5 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnexch3.6 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
Assertion
Ref Expression
tgbtwnexch3 (𝜑𝐶 ∈ (𝐵𝐼𝐷))

Proof of Theorem tgbtwnexch3
StepHypRef Expression
1 tkgeom.p . 2 𝑃 = (Base‘𝐺)
2 tkgeom.d . 2 = (dist‘𝐺)
3 tkgeom.i . 2 𝐼 = (Itv‘𝐺)
4 tkgeom.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tgbtwnintr.2 . 2 (𝜑𝐵𝑃)
6 tgbtwnintr.3 . 2 (𝜑𝐶𝑃)
7 tgbtwnintr.4 . 2 (𝜑𝐷𝑃)
8 tgbtwnintr.1 . 2 (𝜑𝐴𝑃)
9 tgbtwnexch3.5 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
101, 2, 3, 4, 8, 5, 6, 9tgbtwncom 26753 . 2 (𝜑𝐵 ∈ (𝐶𝐼𝐴))
11 tgbtwnexch3.6 . . 3 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
121, 2, 3, 4, 8, 6, 7, 11tgbtwncom 26753 . 2 (𝜑𝐶 ∈ (𝐷𝐼𝐴))
131, 2, 3, 4, 5, 6, 7, 8, 10, 12tgbtwnintr 26758 1 (𝜑𝐶 ∈ (𝐵𝐼𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718
This theorem is referenced by:  tgbtwnouttr2  26760  tgifscgr  26773  tgcgrxfr  26783  tgbtwnconn1lem1  26837  tgbtwnconn1lem2  26838  tgbtwnconn1lem3  26839  tgbtwnconn2  26841  tgbtwnconn3  26842  btwnhl  26879  tglineeltr  26896  miriso  26935  krippenlem  26955  outpasch  27020  hlpasch  27021
  Copyright terms: Public domain W3C validator