Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgbtwnexch3 | Structured version Visualization version GIF version |
Description: Exchange the first endpoint in betweenness. Left-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwnintr.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwnintr.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwnintr.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgbtwnintr.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgbtwnexch3.5 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
tgbtwnexch3.6 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) |
Ref | Expression |
---|---|
tgbtwnexch3 | ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tkgeom.d | . 2 ⊢ − = (dist‘𝐺) | |
3 | tkgeom.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tkgeom.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tgbtwnintr.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
6 | tgbtwnintr.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
7 | tgbtwnintr.4 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
8 | tgbtwnintr.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
9 | tgbtwnexch3.5 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
10 | 1, 2, 3, 4, 8, 5, 6, 9 | tgbtwncom 26849 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) |
11 | tgbtwnexch3.6 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) | |
12 | 1, 2, 3, 4, 8, 6, 7, 11 | tgbtwncom 26849 | . 2 ⊢ (𝜑 → 𝐶 ∈ (𝐷𝐼𝐴)) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 12 | tgbtwnintr 26854 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 distcds 16971 TarskiGcstrkg 26788 Itvcitv 26794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-trkgc 26809 df-trkgb 26810 df-trkgcb 26811 df-trkg 26814 |
This theorem is referenced by: tgbtwnouttr2 26856 tgifscgr 26869 tgcgrxfr 26879 tgbtwnconn1lem1 26933 tgbtwnconn1lem2 26934 tgbtwnconn1lem3 26935 tgbtwnconn2 26937 tgbtwnconn3 26938 btwnhl 26975 tglineeltr 26992 miriso 27031 krippenlem 27051 outpasch 27116 hlpasch 27117 |
Copyright terms: Public domain | W3C validator |