| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgbtwnexch3 | Structured version Visualization version GIF version | ||
| Description: Exchange the first endpoint in betweenness. Left-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgbtwnintr.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgbtwnintr.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgbtwnintr.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgbtwnintr.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| tgbtwnexch3.5 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
| tgbtwnexch3.6 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) |
| Ref | Expression |
|---|---|
| tgbtwnexch3 | ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tkgeom.d | . 2 ⊢ − = (dist‘𝐺) | |
| 3 | tkgeom.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tkgeom.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | tgbtwnintr.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 6 | tgbtwnintr.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 7 | tgbtwnintr.4 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 8 | tgbtwnintr.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 9 | tgbtwnexch3.5 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
| 10 | 1, 2, 3, 4, 8, 5, 6, 9 | tgbtwncom 28451 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) |
| 11 | tgbtwnexch3.6 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) | |
| 12 | 1, 2, 3, 4, 8, 6, 7, 11 | tgbtwncom 28451 | . 2 ⊢ (𝜑 → 𝐶 ∈ (𝐷𝐼𝐴)) |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 12 | tgbtwnintr 28456 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 distcds 17188 TarskiGcstrkg 28390 Itvcitv 28396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-trkgc 28411 df-trkgb 28412 df-trkgcb 28413 df-trkg 28416 |
| This theorem is referenced by: tgbtwnouttr2 28458 tgifscgr 28471 tgcgrxfr 28481 tgbtwnconn1lem1 28535 tgbtwnconn1lem2 28536 tgbtwnconn1lem3 28537 tgbtwnconn2 28539 tgbtwnconn3 28540 btwnhl 28577 tglineeltr 28594 miriso 28633 krippenlem 28653 outpasch 28718 hlpasch 28719 |
| Copyright terms: Public domain | W3C validator |