MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirconn Structured version   Visualization version   GIF version

Theorem mirconn 27039
Description: Point inversion of connectedness. (Contributed by Thierry Arnoux, 2-Mar-2020.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirconn.m 𝑀 = (𝑆𝐴)
mirconn.a (𝜑𝐴𝑃)
mirconn.x (𝜑𝑋𝑃)
mirconn.y (𝜑𝑌𝑃)
mirconn.1 (𝜑 → (𝑋 ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼𝑋)))
Assertion
Ref Expression
mirconn (𝜑𝐴 ∈ (𝑋𝐼(𝑀𝑌)))

Proof of Theorem mirconn
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 481 . . 3 ((𝜑𝑋 ∈ (𝐴𝐼𝑌)) → 𝐺 ∈ TarskiG)
6 mirconn.x . . . 4 (𝜑𝑋𝑃)
76adantr 481 . . 3 ((𝜑𝑋 ∈ (𝐴𝐼𝑌)) → 𝑋𝑃)
8 mirconn.a . . . 4 (𝜑𝐴𝑃)
98adantr 481 . . 3 ((𝜑𝑋 ∈ (𝐴𝐼𝑌)) → 𝐴𝑃)
10 mirval.l . . . . 5 𝐿 = (LineG‘𝐺)
11 mirval.s . . . . 5 𝑆 = (pInvG‘𝐺)
12 mirconn.m . . . . 5 𝑀 = (𝑆𝐴)
13 mirconn.y . . . . 5 (𝜑𝑌𝑃)
141, 2, 3, 10, 11, 4, 8, 12, 13mircl 27022 . . . 4 (𝜑 → (𝑀𝑌) ∈ 𝑃)
1514adantr 481 . . 3 ((𝜑𝑋 ∈ (𝐴𝐼𝑌)) → (𝑀𝑌) ∈ 𝑃)
1613adantr 481 . . 3 ((𝜑𝑋 ∈ (𝐴𝐼𝑌)) → 𝑌𝑃)
17 simpr 485 . . 3 ((𝜑𝑋 ∈ (𝐴𝐼𝑌)) → 𝑋 ∈ (𝐴𝐼𝑌))
181, 2, 3, 10, 11, 4, 8, 12, 13mirbtwn 27019 . . . 4 (𝜑𝐴 ∈ ((𝑀𝑌)𝐼𝑌))
1918adantr 481 . . 3 ((𝜑𝑋 ∈ (𝐴𝐼𝑌)) → 𝐴 ∈ ((𝑀𝑌)𝐼𝑌))
201, 2, 3, 5, 7, 9, 15, 16, 17, 19tgbtwnintr 26854 . 2 ((𝜑𝑋 ∈ (𝐴𝐼𝑌)) → 𝐴 ∈ (𝑋𝐼(𝑀𝑌)))
211, 2, 3, 4, 6, 8tgbtwntriv2 26848 . . . . . 6 (𝜑𝐴 ∈ (𝑋𝐼𝐴))
2221adantr 481 . . . . 5 ((𝜑𝑌 = 𝐴) → 𝐴 ∈ (𝑋𝐼𝐴))
23 simpr 485 . . . . . . . 8 ((𝜑𝑌 = 𝐴) → 𝑌 = 𝐴)
2423fveq2d 6778 . . . . . . 7 ((𝜑𝑌 = 𝐴) → (𝑀𝑌) = (𝑀𝐴))
251, 2, 3, 10, 11, 4, 8, 12mircinv 27029 . . . . . . . 8 (𝜑 → (𝑀𝐴) = 𝐴)
2625adantr 481 . . . . . . 7 ((𝜑𝑌 = 𝐴) → (𝑀𝐴) = 𝐴)
2724, 26eqtrd 2778 . . . . . 6 ((𝜑𝑌 = 𝐴) → (𝑀𝑌) = 𝐴)
2827oveq2d 7291 . . . . 5 ((𝜑𝑌 = 𝐴) → (𝑋𝐼(𝑀𝑌)) = (𝑋𝐼𝐴))
2922, 28eleqtrrd 2842 . . . 4 ((𝜑𝑌 = 𝐴) → 𝐴 ∈ (𝑋𝐼(𝑀𝑌)))
3029adantlr 712 . . 3 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌 = 𝐴) → 𝐴 ∈ (𝑋𝐼(𝑀𝑌)))
314ad2antrr 723 . . . 4 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌𝐴) → 𝐺 ∈ TarskiG)
326ad2antrr 723 . . . 4 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌𝐴) → 𝑋𝑃)
3313ad2antrr 723 . . . 4 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌𝐴) → 𝑌𝑃)
348ad2antrr 723 . . . 4 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌𝐴) → 𝐴𝑃)
3514ad2antrr 723 . . . 4 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌𝐴) → (𝑀𝑌) ∈ 𝑃)
36 simpr 485 . . . 4 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌𝐴) → 𝑌𝐴)
37 simplr 766 . . . . 5 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌𝐴) → 𝑌 ∈ (𝐴𝐼𝑋))
381, 2, 3, 31, 34, 33, 32, 37tgbtwncom 26849 . . . 4 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌𝐴) → 𝑌 ∈ (𝑋𝐼𝐴))
391, 2, 3, 4, 14, 8, 13, 18tgbtwncom 26849 . . . . 5 (𝜑𝐴 ∈ (𝑌𝐼(𝑀𝑌)))
4039ad2antrr 723 . . . 4 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌𝐴) → 𝐴 ∈ (𝑌𝐼(𝑀𝑌)))
411, 2, 3, 31, 32, 33, 34, 35, 36, 38, 40tgbtwnouttr2 26856 . . 3 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌𝐴) → 𝐴 ∈ (𝑋𝐼(𝑀𝑌)))
4230, 41pm2.61dane 3032 . 2 ((𝜑𝑌 ∈ (𝐴𝐼𝑋)) → 𝐴 ∈ (𝑋𝐼(𝑀𝑌)))
43 mirconn.1 . 2 (𝜑 → (𝑋 ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼𝑋)))
4420, 42, 43mpjaodan 956 1 (𝜑𝐴 ∈ (𝑋𝐼(𝑀𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  cfv 6433  (class class class)co 7275  Basecbs 16912  distcds 16971  TarskiGcstrkg 26788  Itvcitv 26794  LineGclng 26795  pInvGcmir 27013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-trkgc 26809  df-trkgb 26810  df-trkgcb 26811  df-trkg 26814  df-mir 27014
This theorem is referenced by:  mirbtwnhl  27041
  Copyright terms: Public domain W3C validator