Step | Hyp | Ref
| Expression |
1 | | mirval.p |
. . 3
β’ π = (BaseβπΊ) |
2 | | mirval.d |
. . 3
β’ β =
(distβπΊ) |
3 | | mirval.i |
. . 3
β’ πΌ = (ItvβπΊ) |
4 | | mirval.g |
. . . 4
β’ (π β πΊ β TarskiG) |
5 | 4 | adantr 481 |
. . 3
β’ ((π β§ π β (π΄πΌπ)) β πΊ β TarskiG) |
6 | | mirconn.x |
. . . 4
β’ (π β π β π) |
7 | 6 | adantr 481 |
. . 3
β’ ((π β§ π β (π΄πΌπ)) β π β π) |
8 | | mirconn.a |
. . . 4
β’ (π β π΄ β π) |
9 | 8 | adantr 481 |
. . 3
β’ ((π β§ π β (π΄πΌπ)) β π΄ β π) |
10 | | mirval.l |
. . . . 5
β’ πΏ = (LineGβπΊ) |
11 | | mirval.s |
. . . . 5
β’ π = (pInvGβπΊ) |
12 | | mirconn.m |
. . . . 5
β’ π = (πβπ΄) |
13 | | mirconn.y |
. . . . 5
β’ (π β π β π) |
14 | 1, 2, 3, 10, 11, 4, 8, 12, 13 | mircl 27909 |
. . . 4
β’ (π β (πβπ) β π) |
15 | 14 | adantr 481 |
. . 3
β’ ((π β§ π β (π΄πΌπ)) β (πβπ) β π) |
16 | 13 | adantr 481 |
. . 3
β’ ((π β§ π β (π΄πΌπ)) β π β π) |
17 | | simpr 485 |
. . 3
β’ ((π β§ π β (π΄πΌπ)) β π β (π΄πΌπ)) |
18 | 1, 2, 3, 10, 11, 4, 8, 12, 13 | mirbtwn 27906 |
. . . 4
β’ (π β π΄ β ((πβπ)πΌπ)) |
19 | 18 | adantr 481 |
. . 3
β’ ((π β§ π β (π΄πΌπ)) β π΄ β ((πβπ)πΌπ)) |
20 | 1, 2, 3, 5, 7, 9, 15, 16, 17, 19 | tgbtwnintr 27741 |
. 2
β’ ((π β§ π β (π΄πΌπ)) β π΄ β (ππΌ(πβπ))) |
21 | 1, 2, 3, 4, 6, 8 | tgbtwntriv2 27735 |
. . . . . 6
β’ (π β π΄ β (ππΌπ΄)) |
22 | 21 | adantr 481 |
. . . . 5
β’ ((π β§ π = π΄) β π΄ β (ππΌπ΄)) |
23 | | simpr 485 |
. . . . . . . 8
β’ ((π β§ π = π΄) β π = π΄) |
24 | 23 | fveq2d 6895 |
. . . . . . 7
β’ ((π β§ π = π΄) β (πβπ) = (πβπ΄)) |
25 | 1, 2, 3, 10, 11, 4, 8, 12 | mircinv 27916 |
. . . . . . . 8
β’ (π β (πβπ΄) = π΄) |
26 | 25 | adantr 481 |
. . . . . . 7
β’ ((π β§ π = π΄) β (πβπ΄) = π΄) |
27 | 24, 26 | eqtrd 2772 |
. . . . . 6
β’ ((π β§ π = π΄) β (πβπ) = π΄) |
28 | 27 | oveq2d 7424 |
. . . . 5
β’ ((π β§ π = π΄) β (ππΌ(πβπ)) = (ππΌπ΄)) |
29 | 22, 28 | eleqtrrd 2836 |
. . . 4
β’ ((π β§ π = π΄) β π΄ β (ππΌ(πβπ))) |
30 | 29 | adantlr 713 |
. . 3
β’ (((π β§ π β (π΄πΌπ)) β§ π = π΄) β π΄ β (ππΌ(πβπ))) |
31 | 4 | ad2antrr 724 |
. . . 4
β’ (((π β§ π β (π΄πΌπ)) β§ π β π΄) β πΊ β TarskiG) |
32 | 6 | ad2antrr 724 |
. . . 4
β’ (((π β§ π β (π΄πΌπ)) β§ π β π΄) β π β π) |
33 | 13 | ad2antrr 724 |
. . . 4
β’ (((π β§ π β (π΄πΌπ)) β§ π β π΄) β π β π) |
34 | 8 | ad2antrr 724 |
. . . 4
β’ (((π β§ π β (π΄πΌπ)) β§ π β π΄) β π΄ β π) |
35 | 14 | ad2antrr 724 |
. . . 4
β’ (((π β§ π β (π΄πΌπ)) β§ π β π΄) β (πβπ) β π) |
36 | | simpr 485 |
. . . 4
β’ (((π β§ π β (π΄πΌπ)) β§ π β π΄) β π β π΄) |
37 | | simplr 767 |
. . . . 5
β’ (((π β§ π β (π΄πΌπ)) β§ π β π΄) β π β (π΄πΌπ)) |
38 | 1, 2, 3, 31, 34, 33, 32, 37 | tgbtwncom 27736 |
. . . 4
β’ (((π β§ π β (π΄πΌπ)) β§ π β π΄) β π β (ππΌπ΄)) |
39 | 1, 2, 3, 4, 14, 8,
13, 18 | tgbtwncom 27736 |
. . . . 5
β’ (π β π΄ β (ππΌ(πβπ))) |
40 | 39 | ad2antrr 724 |
. . . 4
β’ (((π β§ π β (π΄πΌπ)) β§ π β π΄) β π΄ β (ππΌ(πβπ))) |
41 | 1, 2, 3, 31, 32, 33, 34, 35, 36, 38, 40 | tgbtwnouttr2 27743 |
. . 3
β’ (((π β§ π β (π΄πΌπ)) β§ π β π΄) β π΄ β (ππΌ(πβπ))) |
42 | 30, 41 | pm2.61dane 3029 |
. 2
β’ ((π β§ π β (π΄πΌπ)) β π΄ β (ππΌ(πβπ))) |
43 | | mirconn.1 |
. 2
β’ (π β (π β (π΄πΌπ) β¨ π β (π΄πΌπ))) |
44 | 20, 42, 43 | mpjaodan 957 |
1
β’ (π β π΄ β (ππΌ(πβπ))) |