MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnconn3 Structured version   Visualization version   GIF version

Theorem tgbtwnconn3 28556
Description: Inner connectivity law for betweenness. Theorem 5.3 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
tgbtwnconn.p 𝑃 = (Base‘𝐺)
tgbtwnconn.i 𝐼 = (Itv‘𝐺)
tgbtwnconn.g (𝜑𝐺 ∈ TarskiG)
tgbtwnconn.a (𝜑𝐴𝑃)
tgbtwnconn.b (𝜑𝐵𝑃)
tgbtwnconn.c (𝜑𝐶𝑃)
tgbtwnconn.d (𝜑𝐷𝑃)
tgbtwnconn3.1 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
tgbtwnconn3.2 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
Assertion
Ref Expression
tgbtwnconn3 (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))

Proof of Theorem tgbtwnconn3
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 tgbtwnconn.p . . . 4 𝑃 = (Base‘𝐺)
2 eqid 2735 . . . 4 (dist‘𝐺) = (dist‘𝐺)
3 tgbtwnconn.i . . . 4 𝐼 = (Itv‘𝐺)
4 tgbtwnconn.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐺 ∈ TarskiG)
6 tgbtwnconn.b . . . . 5 (𝜑𝐵𝑃)
76adantr 480 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐵𝑃)
8 tgbtwnconn.a . . . . 5 (𝜑𝐴𝑃)
98adantr 480 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐴𝑃)
10 tgbtwnconn.c . . . . 5 (𝜑𝐶𝑃)
1110adantr 480 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐶𝑃)
12 simpr 484 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (♯‘𝑃) = 1)
131, 2, 3, 5, 7, 9, 11, 12tgldim0itv 28483 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐵 ∈ (𝐴𝐼𝐶))
1413orcd 873 . 2 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))
154ad3antrrr 730 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐺 ∈ TarskiG)
16 simplr 768 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝑝𝑃)
178ad3antrrr 730 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴𝑃)
186ad3antrrr 730 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐵𝑃)
1910ad3antrrr 730 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐶𝑃)
20 simprr 772 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴𝑝)
2120necomd 2987 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝑝𝐴)
22 tgbtwnconn.d . . . . . . 7 (𝜑𝐷𝑃)
2322ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐷𝑃)
24 tgbtwnconn3.1 . . . . . . 7 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
2524ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐵 ∈ (𝐴𝐼𝐷))
26 simprl 770 . . . . . . 7 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴 ∈ (𝐷𝐼𝑝))
271, 2, 3, 15, 23, 17, 16, 26tgbtwncom 28467 . . . . . 6 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴 ∈ (𝑝𝐼𝐷))
281, 2, 3, 15, 18, 17, 16, 23, 25, 27tgbtwnintr 28472 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴 ∈ (𝐵𝐼𝑝))
291, 2, 3, 15, 18, 17, 16, 28tgbtwncom 28467 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴 ∈ (𝑝𝐼𝐵))
30 tgbtwnconn3.2 . . . . . . . 8 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
3130ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐶 ∈ (𝐴𝐼𝐷))
321, 2, 3, 15, 17, 19, 23, 31tgbtwncom 28467 . . . . . 6 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐶 ∈ (𝐷𝐼𝐴))
331, 2, 3, 15, 23, 19, 17, 16, 32, 26tgbtwnexch3 28473 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴 ∈ (𝐶𝐼𝑝))
341, 2, 3, 15, 19, 17, 16, 33tgbtwncom 28467 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴 ∈ (𝑝𝐼𝐶))
351, 3, 15, 16, 17, 18, 19, 21, 29, 34tgbtwnconn2 28555 . . 3 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))
364adantr 480 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐺 ∈ TarskiG)
3722adantr 480 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐷𝑃)
388adantr 480 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐴𝑃)
39 simpr 484 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤ (♯‘𝑃))
401, 2, 3, 36, 37, 38, 39tgbtwndiff 28485 . . 3 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → ∃𝑝𝑃 (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝))
4135, 40r19.29a 3148 . 2 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))
421, 8tgldimor 28481 . 2 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
4314, 41, 42mpjaodan 960 1 (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531  (class class class)co 7405  1c1 11130  cle 11270  2c2 12295  chash 14348  Basecbs 17228  distcds 17280  TarskiGcstrkg 28406  Itvcitv 28412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-s2 14867  df-s3 14868  df-trkgc 28427  df-trkgb 28428  df-trkgcb 28429  df-trkg 28432  df-cgrg 28490
This theorem is referenced by:  tgbtwnconnln3  28557  hltr  28589  hlbtwn  28590  hlpasch  28735
  Copyright terms: Public domain W3C validator