| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgbtwnconn3 | Structured version Visualization version GIF version | ||
| Description: Inner connectivity law for betweenness. Theorem 5.3 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 17-May-2019.) |
| Ref | Expression |
|---|---|
| tgbtwnconn.p | ⊢ 𝑃 = (Base‘𝐺) |
| tgbtwnconn.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tgbtwnconn.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgbtwnconn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgbtwnconn.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgbtwnconn.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgbtwnconn.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| tgbtwnconn3.1 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) |
| tgbtwnconn3.2 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) |
| Ref | Expression |
|---|---|
| tgbtwnconn3 | ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgbtwnconn.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | eqid 2735 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 3 | tgbtwnconn.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tgbtwnconn.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐺 ∈ TarskiG) |
| 6 | tgbtwnconn.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐵 ∈ 𝑃) |
| 8 | tgbtwnconn.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐴 ∈ 𝑃) |
| 10 | tgbtwnconn.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐶 ∈ 𝑃) |
| 12 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (♯‘𝑃) = 1) → (♯‘𝑃) = 1) | |
| 13 | 1, 2, 3, 5, 7, 9, 11, 12 | tgldim0itv 28483 | . . 3 ⊢ ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐵 ∈ (𝐴𝐼𝐶)) |
| 14 | 13 | orcd 873 | . 2 ⊢ ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵))) |
| 15 | 4 | ad3antrrr 730 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐺 ∈ TarskiG) |
| 16 | simplr 768 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝑝 ∈ 𝑃) | |
| 17 | 8 | ad3antrrr 730 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ 𝑃) |
| 18 | 6 | ad3antrrr 730 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐵 ∈ 𝑃) |
| 19 | 10 | ad3antrrr 730 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐶 ∈ 𝑃) |
| 20 | simprr 772 | . . . . 5 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ≠ 𝑝) | |
| 21 | 20 | necomd 2987 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝑝 ≠ 𝐴) |
| 22 | tgbtwnconn.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 23 | 22 | ad3antrrr 730 | . . . . . 6 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐷 ∈ 𝑃) |
| 24 | tgbtwnconn3.1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) | |
| 25 | 24 | ad3antrrr 730 | . . . . . 6 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐵 ∈ (𝐴𝐼𝐷)) |
| 26 | simprl 770 | . . . . . . 7 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝐷𝐼𝑝)) | |
| 27 | 1, 2, 3, 15, 23, 17, 16, 26 | tgbtwncom 28467 | . . . . . 6 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝑝𝐼𝐷)) |
| 28 | 1, 2, 3, 15, 18, 17, 16, 23, 25, 27 | tgbtwnintr 28472 | . . . . 5 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝐵𝐼𝑝)) |
| 29 | 1, 2, 3, 15, 18, 17, 16, 28 | tgbtwncom 28467 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝑝𝐼𝐵)) |
| 30 | tgbtwnconn3.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) | |
| 31 | 30 | ad3antrrr 730 | . . . . . . 7 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐶 ∈ (𝐴𝐼𝐷)) |
| 32 | 1, 2, 3, 15, 17, 19, 23, 31 | tgbtwncom 28467 | . . . . . 6 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐶 ∈ (𝐷𝐼𝐴)) |
| 33 | 1, 2, 3, 15, 23, 19, 17, 16, 32, 26 | tgbtwnexch3 28473 | . . . . 5 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝐶𝐼𝑝)) |
| 34 | 1, 2, 3, 15, 19, 17, 16, 33 | tgbtwncom 28467 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝑝𝐼𝐶)) |
| 35 | 1, 3, 15, 16, 17, 18, 19, 21, 29, 34 | tgbtwnconn2 28555 | . . 3 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵))) |
| 36 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐺 ∈ TarskiG) |
| 37 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐷 ∈ 𝑃) |
| 38 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐴 ∈ 𝑃) |
| 39 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤ (♯‘𝑃)) | |
| 40 | 1, 2, 3, 36, 37, 38, 39 | tgbtwndiff 28485 | . . 3 ⊢ ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → ∃𝑝 ∈ 𝑃 (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) |
| 41 | 35, 40 | r19.29a 3148 | . 2 ⊢ ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵))) |
| 42 | 1, 8 | tgldimor 28481 | . 2 ⊢ (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))) |
| 43 | 14, 41, 42 | mpjaodan 960 | 1 ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 1c1 11130 ≤ cle 11270 2c2 12295 ♯chash 14348 Basecbs 17228 distcds 17280 TarskiGcstrkg 28406 Itvcitv 28412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8719 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-concat 14589 df-s1 14614 df-s2 14867 df-s3 14868 df-trkgc 28427 df-trkgb 28428 df-trkgcb 28429 df-trkg 28432 df-cgrg 28490 |
| This theorem is referenced by: tgbtwnconnln3 28557 hltr 28589 hlbtwn 28590 hlpasch 28735 |
| Copyright terms: Public domain | W3C validator |