![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgbtwnconn3 | Structured version Visualization version GIF version |
Description: Inner connectivity law for betweenness. Theorem 5.3 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 17-May-2019.) |
Ref | Expression |
---|---|
tgbtwnconn.p | ⊢ 𝑃 = (Base‘𝐺) |
tgbtwnconn.i | ⊢ 𝐼 = (Itv‘𝐺) |
tgbtwnconn.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwnconn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwnconn.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwnconn.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgbtwnconn.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgbtwnconn3.1 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) |
tgbtwnconn3.2 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) |
Ref | Expression |
---|---|
tgbtwnconn3 | ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgbtwnconn.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | eqid 2731 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
3 | tgbtwnconn.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tgbtwnconn.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐺 ∈ TarskiG) |
6 | tgbtwnconn.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐵 ∈ 𝑃) |
8 | tgbtwnconn.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐴 ∈ 𝑃) |
10 | tgbtwnconn.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐶 ∈ 𝑃) |
12 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (♯‘𝑃) = 1) → (♯‘𝑃) = 1) | |
13 | 1, 2, 3, 5, 7, 9, 11, 12 | tgldim0itv 28189 | . . 3 ⊢ ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐵 ∈ (𝐴𝐼𝐶)) |
14 | 13 | orcd 870 | . 2 ⊢ ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵))) |
15 | 4 | ad3antrrr 727 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐺 ∈ TarskiG) |
16 | simplr 766 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝑝 ∈ 𝑃) | |
17 | 8 | ad3antrrr 727 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ 𝑃) |
18 | 6 | ad3antrrr 727 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐵 ∈ 𝑃) |
19 | 10 | ad3antrrr 727 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐶 ∈ 𝑃) |
20 | simprr 770 | . . . . 5 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ≠ 𝑝) | |
21 | 20 | necomd 2995 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝑝 ≠ 𝐴) |
22 | tgbtwnconn.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
23 | 22 | ad3antrrr 727 | . . . . . 6 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐷 ∈ 𝑃) |
24 | tgbtwnconn3.1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) | |
25 | 24 | ad3antrrr 727 | . . . . . 6 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐵 ∈ (𝐴𝐼𝐷)) |
26 | simprl 768 | . . . . . . 7 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝐷𝐼𝑝)) | |
27 | 1, 2, 3, 15, 23, 17, 16, 26 | tgbtwncom 28173 | . . . . . 6 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝑝𝐼𝐷)) |
28 | 1, 2, 3, 15, 18, 17, 16, 23, 25, 27 | tgbtwnintr 28178 | . . . . 5 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝐵𝐼𝑝)) |
29 | 1, 2, 3, 15, 18, 17, 16, 28 | tgbtwncom 28173 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝑝𝐼𝐵)) |
30 | tgbtwnconn3.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) | |
31 | 30 | ad3antrrr 727 | . . . . . . 7 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐶 ∈ (𝐴𝐼𝐷)) |
32 | 1, 2, 3, 15, 17, 19, 23, 31 | tgbtwncom 28173 | . . . . . 6 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐶 ∈ (𝐷𝐼𝐴)) |
33 | 1, 2, 3, 15, 23, 19, 17, 16, 32, 26 | tgbtwnexch3 28179 | . . . . 5 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝐶𝐼𝑝)) |
34 | 1, 2, 3, 15, 19, 17, 16, 33 | tgbtwncom 28173 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝑝𝐼𝐶)) |
35 | 1, 3, 15, 16, 17, 18, 19, 21, 29, 34 | tgbtwnconn2 28261 | . . 3 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵))) |
36 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐺 ∈ TarskiG) |
37 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐷 ∈ 𝑃) |
38 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐴 ∈ 𝑃) |
39 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤ (♯‘𝑃)) | |
40 | 1, 2, 3, 36, 37, 38, 39 | tgbtwndiff 28191 | . . 3 ⊢ ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → ∃𝑝 ∈ 𝑃 (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) |
41 | 35, 40 | r19.29a 3161 | . 2 ⊢ ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵))) |
42 | 1, 8 | tgldimor 28187 | . 2 ⊢ (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))) |
43 | 14, 41, 42 | mpjaodan 956 | 1 ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 1c1 11117 ≤ cle 11256 2c2 12274 ♯chash 14297 Basecbs 17151 distcds 17213 TarskiGcstrkg 28112 Itvcitv 28118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-oadd 8476 df-er 8709 df-pm 8829 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-dju 9902 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-xnn0 12552 df-z 12566 df-uz 12830 df-fz 13492 df-fzo 13635 df-hash 14298 df-word 14472 df-concat 14528 df-s1 14553 df-s2 14806 df-s3 14807 df-trkgc 28133 df-trkgb 28134 df-trkgcb 28135 df-trkg 28138 df-cgrg 28196 |
This theorem is referenced by: tgbtwnconnln3 28263 hltr 28295 hlbtwn 28296 hlpasch 28441 |
Copyright terms: Public domain | W3C validator |