MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnconn3 Structured version   Visualization version   GIF version

Theorem tgbtwnconn3 26362
Description: Inner connectivity law for betweenness. Theorem 5.3 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
tgbtwnconn.p 𝑃 = (Base‘𝐺)
tgbtwnconn.i 𝐼 = (Itv‘𝐺)
tgbtwnconn.g (𝜑𝐺 ∈ TarskiG)
tgbtwnconn.a (𝜑𝐴𝑃)
tgbtwnconn.b (𝜑𝐵𝑃)
tgbtwnconn.c (𝜑𝐶𝑃)
tgbtwnconn.d (𝜑𝐷𝑃)
tgbtwnconn3.1 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
tgbtwnconn3.2 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
Assertion
Ref Expression
tgbtwnconn3 (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))

Proof of Theorem tgbtwnconn3
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 tgbtwnconn.p . . . 4 𝑃 = (Base‘𝐺)
2 eqid 2824 . . . 4 (dist‘𝐺) = (dist‘𝐺)
3 tgbtwnconn.i . . . 4 𝐼 = (Itv‘𝐺)
4 tgbtwnconn.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 484 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐺 ∈ TarskiG)
6 tgbtwnconn.b . . . . 5 (𝜑𝐵𝑃)
76adantr 484 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐵𝑃)
8 tgbtwnconn.a . . . . 5 (𝜑𝐴𝑃)
98adantr 484 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐴𝑃)
10 tgbtwnconn.c . . . . 5 (𝜑𝐶𝑃)
1110adantr 484 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐶𝑃)
12 simpr 488 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (♯‘𝑃) = 1)
131, 2, 3, 5, 7, 9, 11, 12tgldim0itv 26289 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐵 ∈ (𝐴𝐼𝐶))
1413orcd 870 . 2 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))
154ad3antrrr 729 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐺 ∈ TarskiG)
16 simplr 768 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝑝𝑃)
178ad3antrrr 729 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴𝑃)
186ad3antrrr 729 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐵𝑃)
1910ad3antrrr 729 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐶𝑃)
20 simprr 772 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴𝑝)
2120necomd 3068 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝑝𝐴)
22 tgbtwnconn.d . . . . . . 7 (𝜑𝐷𝑃)
2322ad3antrrr 729 . . . . . 6 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐷𝑃)
24 tgbtwnconn3.1 . . . . . . 7 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
2524ad3antrrr 729 . . . . . 6 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐵 ∈ (𝐴𝐼𝐷))
26 simprl 770 . . . . . . 7 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴 ∈ (𝐷𝐼𝑝))
271, 2, 3, 15, 23, 17, 16, 26tgbtwncom 26273 . . . . . 6 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴 ∈ (𝑝𝐼𝐷))
281, 2, 3, 15, 18, 17, 16, 23, 25, 27tgbtwnintr 26278 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴 ∈ (𝐵𝐼𝑝))
291, 2, 3, 15, 18, 17, 16, 28tgbtwncom 26273 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴 ∈ (𝑝𝐼𝐵))
30 tgbtwnconn3.2 . . . . . . . 8 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
3130ad3antrrr 729 . . . . . . 7 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐶 ∈ (𝐴𝐼𝐷))
321, 2, 3, 15, 17, 19, 23, 31tgbtwncom 26273 . . . . . 6 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐶 ∈ (𝐷𝐼𝐴))
331, 2, 3, 15, 23, 19, 17, 16, 32, 26tgbtwnexch3 26279 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴 ∈ (𝐶𝐼𝑝))
341, 2, 3, 15, 19, 17, 16, 33tgbtwncom 26273 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴 ∈ (𝑝𝐼𝐶))
351, 3, 15, 16, 17, 18, 19, 21, 29, 34tgbtwnconn2 26361 . . 3 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))
364adantr 484 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐺 ∈ TarskiG)
3722adantr 484 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐷𝑃)
388adantr 484 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐴𝑃)
39 simpr 488 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤ (♯‘𝑃))
401, 2, 3, 36, 37, 38, 39tgbtwndiff 26291 . . 3 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → ∃𝑝𝑃 (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝))
4135, 40r19.29a 3281 . 2 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))
421, 8tgldimor 26287 . 2 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
4314, 41, 42mpjaodan 956 1 (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2115  wne 3013   class class class wbr 5049  cfv 6338  (class class class)co 7140  1c1 10525  cle 10663  2c2 11680  chash 13686  Basecbs 16474  distcds 16565  TarskiGcstrkg 26215  Itvcitv 26221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5173  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-cnex 10580  ax-resscn 10581  ax-1cn 10582  ax-icn 10583  ax-addcl 10584  ax-addrcl 10585  ax-mulcl 10586  ax-mulrcl 10587  ax-mulcom 10588  ax-addass 10589  ax-mulass 10590  ax-distr 10591  ax-i2m1 10592  ax-1ne0 10593  ax-1rid 10594  ax-rnegex 10595  ax-rrecex 10596  ax-cnre 10597  ax-pre-lttri 10598  ax-pre-lttrn 10599  ax-pre-ltadd 10600  ax-pre-mulgt0 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4822  df-int 4860  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-tr 5156  df-id 5443  df-eprel 5448  df-po 5457  df-so 5458  df-fr 5497  df-we 5499  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7674  df-2nd 7675  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-pm 8394  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-dju 9316  df-card 9354  df-pnf 10664  df-mnf 10665  df-xr 10666  df-ltxr 10667  df-le 10668  df-sub 10859  df-neg 10860  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-trkgc 26233  df-trkgb 26234  df-trkgcb 26235  df-trkg 26238  df-cgrg 26296
This theorem is referenced by:  tgbtwnconnln3  26363  hltr  26395  hlbtwn  26396  hlpasch  26541
  Copyright terms: Public domain W3C validator