MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgtrisegint Structured version   Visualization version   GIF version

Theorem tgtrisegint 28219
Description: A line segment between two sides of a triange intersects a segment crossing from the remaining side to the opposite vertex. Theorem 3.17 of [Schwabhauser] p. 33. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Baseβ€˜πΊ)
tkgeom.d βˆ’ = (distβ€˜πΊ)
tkgeom.i 𝐼 = (Itvβ€˜πΊ)
tkgeom.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tgbtwnintr.1 (πœ‘ β†’ 𝐴 ∈ 𝑃)
tgbtwnintr.2 (πœ‘ β†’ 𝐡 ∈ 𝑃)
tgbtwnintr.3 (πœ‘ β†’ 𝐢 ∈ 𝑃)
tgbtwnintr.4 (πœ‘ β†’ 𝐷 ∈ 𝑃)
tgtrisegint.e (πœ‘ β†’ 𝐸 ∈ 𝑃)
tgtrisegint.p (πœ‘ β†’ 𝐹 ∈ 𝑃)
tgtrisegint.1 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))
tgtrisegint.2 (πœ‘ β†’ 𝐸 ∈ (𝐷𝐼𝐢))
tgtrisegint.3 (πœ‘ β†’ 𝐹 ∈ (𝐴𝐼𝐷))
Assertion
Ref Expression
tgtrisegint (πœ‘ β†’ βˆƒπ‘ž ∈ 𝑃 (π‘ž ∈ (𝐹𝐼𝐢) ∧ π‘ž ∈ (𝐡𝐼𝐸)))
Distinct variable groups:   βˆ’ ,π‘ž   𝐴,π‘ž   𝐡,π‘ž   𝐢,π‘ž   𝐷,π‘ž   𝐸,π‘ž   𝐹,π‘ž   𝐼,π‘ž   𝑃,π‘ž   πœ‘,π‘ž
Allowed substitution hint:   𝐺(π‘ž)

Proof of Theorem tgtrisegint
Dummy variable π‘Ÿ is distinct from all other variables.
StepHypRef Expression
1 tkgeom.p . . . 4 𝑃 = (Baseβ€˜πΊ)
2 tkgeom.d . . . 4 βˆ’ = (distβ€˜πΊ)
3 tkgeom.i . . . 4 𝐼 = (Itvβ€˜πΊ)
4 tkgeom.g . . . . 5 (πœ‘ β†’ 𝐺 ∈ TarskiG)
54ad2antrr 723 . . . 4 (((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) β†’ 𝐺 ∈ TarskiG)
6 tgtrisegint.e . . . . 5 (πœ‘ β†’ 𝐸 ∈ 𝑃)
76ad2antrr 723 . . . 4 (((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) β†’ 𝐸 ∈ 𝑃)
8 tgbtwnintr.3 . . . . 5 (πœ‘ β†’ 𝐢 ∈ 𝑃)
98ad2antrr 723 . . . 4 (((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) β†’ 𝐢 ∈ 𝑃)
10 tgbtwnintr.1 . . . . 5 (πœ‘ β†’ 𝐴 ∈ 𝑃)
1110ad2antrr 723 . . . 4 (((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) β†’ 𝐴 ∈ 𝑃)
12 simplr 766 . . . 4 (((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) β†’ π‘Ÿ ∈ 𝑃)
13 tgbtwnintr.2 . . . . 5 (πœ‘ β†’ 𝐡 ∈ 𝑃)
1413ad2antrr 723 . . . 4 (((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) β†’ 𝐡 ∈ 𝑃)
15 simprl 768 . . . 4 (((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) β†’ π‘Ÿ ∈ (𝐸𝐼𝐴))
16 tgtrisegint.1 . . . . . 6 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))
1716ad2antrr 723 . . . . 5 (((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) β†’ 𝐡 ∈ (𝐴𝐼𝐢))
181, 2, 3, 5, 11, 14, 9, 17tgbtwncom 28208 . . . 4 (((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) β†’ 𝐡 ∈ (𝐢𝐼𝐴))
191, 2, 3, 5, 7, 9, 11, 12, 14, 15, 18axtgpasch 28187 . . 3 (((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) β†’ βˆƒπ‘ž ∈ 𝑃 (π‘ž ∈ (π‘ŸπΌπΆ) ∧ π‘ž ∈ (𝐡𝐼𝐸)))
205ad2antrr 723 . . . . . . 7 (((((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) ∧ π‘ž ∈ 𝑃) ∧ π‘ž ∈ (π‘ŸπΌπΆ)) β†’ 𝐺 ∈ TarskiG)
21 tgtrisegint.p . . . . . . . . 9 (πœ‘ β†’ 𝐹 ∈ 𝑃)
2221ad2antrr 723 . . . . . . . 8 (((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) β†’ 𝐹 ∈ 𝑃)
2322ad2antrr 723 . . . . . . 7 (((((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) ∧ π‘ž ∈ 𝑃) ∧ π‘ž ∈ (π‘ŸπΌπΆ)) β†’ 𝐹 ∈ 𝑃)
2412ad2antrr 723 . . . . . . 7 (((((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) ∧ π‘ž ∈ 𝑃) ∧ π‘ž ∈ (π‘ŸπΌπΆ)) β†’ π‘Ÿ ∈ 𝑃)
25 simplr 766 . . . . . . 7 (((((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) ∧ π‘ž ∈ 𝑃) ∧ π‘ž ∈ (π‘ŸπΌπΆ)) β†’ π‘ž ∈ 𝑃)
269ad2antrr 723 . . . . . . 7 (((((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) ∧ π‘ž ∈ 𝑃) ∧ π‘ž ∈ (π‘ŸπΌπΆ)) β†’ 𝐢 ∈ 𝑃)
27 simprr 770 . . . . . . . 8 (((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) β†’ π‘Ÿ ∈ (𝐹𝐼𝐢))
2827ad2antrr 723 . . . . . . 7 (((((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) ∧ π‘ž ∈ 𝑃) ∧ π‘ž ∈ (π‘ŸπΌπΆ)) β†’ π‘Ÿ ∈ (𝐹𝐼𝐢))
29 simpr 484 . . . . . . 7 (((((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) ∧ π‘ž ∈ 𝑃) ∧ π‘ž ∈ (π‘ŸπΌπΆ)) β†’ π‘ž ∈ (π‘ŸπΌπΆ))
301, 2, 3, 20, 23, 24, 25, 26, 28, 29tgbtwnexch2 28216 . . . . . 6 (((((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) ∧ π‘ž ∈ 𝑃) ∧ π‘ž ∈ (π‘ŸπΌπΆ)) β†’ π‘ž ∈ (𝐹𝐼𝐢))
3130ex 412 . . . . 5 ((((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) ∧ π‘ž ∈ 𝑃) β†’ (π‘ž ∈ (π‘ŸπΌπΆ) β†’ π‘ž ∈ (𝐹𝐼𝐢)))
3231anim1d 610 . . . 4 ((((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) ∧ π‘ž ∈ 𝑃) β†’ ((π‘ž ∈ (π‘ŸπΌπΆ) ∧ π‘ž ∈ (𝐡𝐼𝐸)) β†’ (π‘ž ∈ (𝐹𝐼𝐢) ∧ π‘ž ∈ (𝐡𝐼𝐸))))
3332reximdva 3160 . . 3 (((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) β†’ (βˆƒπ‘ž ∈ 𝑃 (π‘ž ∈ (π‘ŸπΌπΆ) ∧ π‘ž ∈ (𝐡𝐼𝐸)) β†’ βˆƒπ‘ž ∈ 𝑃 (π‘ž ∈ (𝐹𝐼𝐢) ∧ π‘ž ∈ (𝐡𝐼𝐸))))
3419, 33mpd 15 . 2 (((πœ‘ ∧ π‘Ÿ ∈ 𝑃) ∧ (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢))) β†’ βˆƒπ‘ž ∈ 𝑃 (π‘ž ∈ (𝐹𝐼𝐢) ∧ π‘ž ∈ (𝐡𝐼𝐸)))
35 tgbtwnintr.4 . . 3 (πœ‘ β†’ 𝐷 ∈ 𝑃)
36 tgtrisegint.2 . . . 4 (πœ‘ β†’ 𝐸 ∈ (𝐷𝐼𝐢))
371, 2, 3, 4, 35, 6, 8, 36tgbtwncom 28208 . . 3 (πœ‘ β†’ 𝐸 ∈ (𝐢𝐼𝐷))
38 tgtrisegint.3 . . 3 (πœ‘ β†’ 𝐹 ∈ (𝐴𝐼𝐷))
391, 2, 3, 4, 8, 10, 35, 6, 21, 37, 38axtgpasch 28187 . 2 (πœ‘ β†’ βˆƒπ‘Ÿ ∈ 𝑃 (π‘Ÿ ∈ (𝐸𝐼𝐴) ∧ π‘Ÿ ∈ (𝐹𝐼𝐢)))
4034, 39r19.29a 3154 1 (πœ‘ β†’ βˆƒπ‘ž ∈ 𝑃 (π‘ž ∈ (𝐹𝐼𝐢) ∧ π‘ž ∈ (𝐡𝐼𝐸)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3062  β€˜cfv 6533  (class class class)co 7401  Basecbs 17143  distcds 17205  TarskiGcstrkg 28147  Itvcitv 28153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-nul 5296
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-iota 6485  df-fv 6541  df-ov 7404  df-trkgc 28168  df-trkgb 28169  df-trkgcb 28170  df-trkg 28173
This theorem is referenced by:  krippenlem  28410  colperpexlem3  28452
  Copyright terms: Public domain W3C validator