MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colperpexlem3 Structured version   Visualization version   GIF version

Theorem colperpexlem3 27674
Description: Lemma for colperpex 27675. Case 1 of theorem 8.21 of [Schwabhauser] p. 63. (Contributed by Thierry Arnoux, 20-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
colperpex.1 (𝜑𝐴𝑃)
colperpex.2 (𝜑𝐵𝑃)
colperpex.3 (𝜑𝐶𝑃)
colperpex.4 (𝜑𝐴𝐵)
colperpexlem3.1 (𝜑 → ¬ 𝐶 ∈ (𝐴𝐿𝐵))
Assertion
Ref Expression
colperpexlem3 (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
Distinct variable groups:   ,𝑝,𝑡   𝐴,𝑝,𝑡   𝐵,𝑝,𝑡   𝐶,𝑝,𝑡   𝐺,𝑝,𝑡   𝐼,𝑝,𝑡   𝐿,𝑝,𝑡   𝑃,𝑝,𝑡   𝜑,𝑝,𝑡

Proof of Theorem colperpexlem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 colperpex.p . . . 4 𝑃 = (Base‘𝐺)
2 colperpex.d . . . 4 = (dist‘𝐺)
3 colperpex.i . . . 4 𝐼 = (Itv‘𝐺)
4 colperpex.l . . . 4 𝐿 = (LineG‘𝐺)
5 eqid 2736 . . . 4 (pInvG‘𝐺) = (pInvG‘𝐺)
6 colperpex.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76ad2antrr 724 . . . 4 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
8 eqid 2736 . . . 4 ((pInvG‘𝐺)‘𝑝) = ((pInvG‘𝐺)‘𝑝)
9 colperpex.1 . . . . . . . 8 (𝜑𝐴𝑃)
10 colperpex.2 . . . . . . . 8 (𝜑𝐵𝑃)
11 colperpex.4 . . . . . . . 8 (𝜑𝐴𝐵)
121, 3, 4, 6, 9, 10, 11tgelrnln 27572 . . . . . . 7 (𝜑 → (𝐴𝐿𝐵) ∈ ran 𝐿)
1312ad2antrr 724 . . . . . 6 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐴𝐿𝐵) ∈ ran 𝐿)
14 simplr 767 . . . . . 6 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑥 ∈ (𝐴𝐿𝐵))
151, 4, 3, 7, 13, 14tglnpt 27491 . . . . 5 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑥𝑃)
16 eqid 2736 . . . . 5 ((pInvG‘𝐺)‘𝑥) = ((pInvG‘𝐺)‘𝑥)
17 colperpex.3 . . . . . 6 (𝜑𝐶𝑃)
1817ad2antrr 724 . . . . 5 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐶𝑃)
191, 2, 3, 4, 5, 7, 15, 16, 18mircl 27603 . . . 4 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (((pInvG‘𝐺)‘𝑥)‘𝐶) ∈ 𝑃)
209ad2antrr 724 . . . . 5 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐴𝑃)
21 eqid 2736 . . . . 5 ((pInvG‘𝐺)‘𝐴) = ((pInvG‘𝐺)‘𝐴)
221, 2, 3, 4, 5, 7, 20, 21, 18mircl 27603 . . . 4 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (((pInvG‘𝐺)‘𝐴)‘𝐶) ∈ 𝑃)
231, 2, 3, 4, 5, 7, 20, 21, 18mircgr 27599 . . . . 5 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐴 (((pInvG‘𝐺)‘𝐴)‘𝐶)) = (𝐴 𝐶))
2410ad2antrr 724 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐵𝑃)
25 colperpexlem3.1 . . . . . . . . . . 11 (𝜑 → ¬ 𝐶 ∈ (𝐴𝐿𝐵))
2625ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ¬ 𝐶 ∈ (𝐴𝐿𝐵))
27 nelne2 3042 . . . . . . . . . 10 ((𝑥 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝑥𝐶)
2814, 26, 27syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑥𝐶)
291, 3, 4, 7, 15, 18, 28tgelrnln 27572 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝑥𝐿𝐶) ∈ ran 𝐿)
301, 3, 4, 7, 15, 18, 28tglinecom 27577 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝑥𝐿𝐶) = (𝐶𝐿𝑥))
31 simpr 485 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵))
3230, 31eqbrtrd 5127 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝑥𝐿𝐶)(⟂G‘𝐺)(𝐴𝐿𝐵))
331, 2, 3, 4, 7, 29, 13, 32perpcom 27655 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑥𝐿𝐶))
341, 2, 3, 4, 7, 20, 24, 14, 18, 33perprag 27668 . . . . . 6 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ⟨“𝐴𝑥𝐶”⟩ ∈ (∟G‘𝐺))
351, 2, 3, 4, 5, 7, 20, 15, 18israg 27639 . . . . . 6 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (⟨“𝐴𝑥𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 (((pInvG‘𝐺)‘𝑥)‘𝐶))))
3634, 35mpbid 231 . . . . 5 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐴 𝐶) = (𝐴 (((pInvG‘𝐺)‘𝑥)‘𝐶)))
3723, 36eqtr2d 2777 . . . 4 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐴 (((pInvG‘𝐺)‘𝑥)‘𝐶)) = (𝐴 (((pInvG‘𝐺)‘𝐴)‘𝐶)))
381, 2, 3, 4, 5, 7, 8, 19, 22, 20, 37midexlem 27634 . . 3 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑝𝑃 (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶)))
397ad2antrr 724 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐺 ∈ TarskiG)
4022ad2antrr 724 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → (((pInvG‘𝐺)‘𝐴)‘𝐶) ∈ 𝑃)
4120ad2antrr 724 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐴𝑃)
4218ad2antrr 724 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐶𝑃)
4319ad2antrr 724 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → (((pInvG‘𝐺)‘𝑥)‘𝐶) ∈ 𝑃)
4415ad2antrr 724 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥𝑃)
45 simplr 767 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑝𝑃)
461, 2, 3, 4, 5, 39, 41, 21, 42mirbtwn 27600 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐴 ∈ ((((pInvG‘𝐺)‘𝐴)‘𝐶)𝐼𝐶))
471, 2, 3, 4, 5, 39, 44, 16, 42mirbtwn 27600 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥 ∈ ((((pInvG‘𝐺)‘𝑥)‘𝐶)𝐼𝐶))
481, 2, 3, 4, 5, 39, 45, 8, 43mirbtwn 27600 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑝 ∈ ((((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))𝐼(((pInvG‘𝐺)‘𝑥)‘𝐶)))
49 simpr 485 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶)))
5049eqcomd 2742 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶)) = (((pInvG‘𝐺)‘𝐴)‘𝐶))
5150oveq1d 7372 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → ((((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))𝐼(((pInvG‘𝐺)‘𝑥)‘𝐶)) = ((((pInvG‘𝐺)‘𝐴)‘𝐶)𝐼(((pInvG‘𝐺)‘𝑥)‘𝐶)))
5248, 51eleqtrd 2840 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑝 ∈ ((((pInvG‘𝐺)‘𝐴)‘𝐶)𝐼(((pInvG‘𝐺)‘𝑥)‘𝐶)))
531, 2, 3, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52tgtrisegint 27441 . . . . . . 7 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → ∃𝑡𝑃 (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥)))
5439ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝐺 ∈ TarskiG)
5541ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝐴𝑃)
56 simpllr 774 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝑡𝑃)
57 simplrr 776 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝑡 ∈ (𝐴𝐼𝑥))
58 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴)
5958oveq2d 7373 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → (𝐴𝐼𝑥) = (𝐴𝐼𝐴))
6057, 59eleqtrd 2840 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝑡 ∈ (𝐴𝐼𝐴))
611, 2, 3, 54, 55, 56, 60axtgbtwnid 27408 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝐴 = 𝑡)
6261eqcomd 2742 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝑡 = 𝐴)
6362oveq1d 7372 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → (𝑡𝐿𝑝) = (𝐴𝐿𝑝))
6450ad3antrrr 728 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶)) = (((pInvG‘𝐺)‘𝐴)‘𝐶))
6558fveq2d 6846 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → ((pInvG‘𝐺)‘𝑥) = ((pInvG‘𝐺)‘𝐴))
6665fveq1d 6844 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → (((pInvG‘𝐺)‘𝑥)‘𝐶) = (((pInvG‘𝐺)‘𝐴)‘𝐶))
6764, 66eqtr4d 2779 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶)) = (((pInvG‘𝐺)‘𝑥)‘𝐶))
6845ad3antrrr 728 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝑝𝑃)
6943ad3antrrr 728 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → (((pInvG‘𝐺)‘𝑥)‘𝐶) ∈ 𝑃)
701, 2, 3, 4, 5, 54, 68, 8, 69mirinv 27608 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → ((((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶)) = (((pInvG‘𝐺)‘𝑥)‘𝐶) ↔ 𝑝 = (((pInvG‘𝐺)‘𝑥)‘𝐶)))
7167, 70mpbid 231 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝑝 = (((pInvG‘𝐺)‘𝑥)‘𝐶))
7244ad3antrrr 728 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝑥𝑃)
7358oveq1d 7372 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → (𝑥𝐼𝑥) = (𝐴𝐼𝑥))
7457, 73eleqtrrd 2841 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝑡 ∈ (𝑥𝐼𝑥))
751, 2, 3, 54, 72, 56, 74axtgbtwnid 27408 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝑥 = 𝑡)
7675eqcomd 2742 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝑡 = 𝑥)
7771, 76oveq12d 7375 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → (𝑝𝐿𝑡) = ((((pInvG‘𝐺)‘𝑥)‘𝐶)𝐿𝑥))
7834ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → ⟨“𝐴𝑥𝐶”⟩ ∈ (∟G‘𝐺))
791, 2, 3, 4, 5, 39, 45, 8, 43, 50mircom 27605 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝐴)‘𝐶)) = (((pInvG‘𝐺)‘𝑥)‘𝐶))
8028ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥𝐶)
811, 2, 3, 4, 39, 5, 21, 16, 8, 41, 44, 42, 45, 78, 79, 80colperpexlem2 27673 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐴𝑝)
8281ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝐴𝑝)
8362, 82eqnetrd 3011 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝑡𝑝)
841, 3, 4, 54, 56, 68, 83tglinecom 27577 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → (𝑡𝐿𝑝) = (𝑝𝐿𝑡))
8542ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝐶𝑃)
8680ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝑥𝐶)
8754adantr 481 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) ∧ (((pInvG‘𝐺)‘𝑥)‘𝐶) = 𝑥) → 𝐺 ∈ TarskiG)
8872adantr 481 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) ∧ (((pInvG‘𝐺)‘𝑥)‘𝐶) = 𝑥) → 𝑥𝑃)
8985adantr 481 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) ∧ (((pInvG‘𝐺)‘𝑥)‘𝐶) = 𝑥) → 𝐶𝑃)
901, 2, 3, 4, 5, 87, 88, 16mircinv 27610 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) ∧ (((pInvG‘𝐺)‘𝑥)‘𝐶) = 𝑥) → (((pInvG‘𝐺)‘𝑥)‘𝑥) = 𝑥)
91 simpr 485 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) ∧ (((pInvG‘𝐺)‘𝑥)‘𝐶) = 𝑥) → (((pInvG‘𝐺)‘𝑥)‘𝐶) = 𝑥)
9290, 91eqtr4d 2779 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) ∧ (((pInvG‘𝐺)‘𝑥)‘𝐶) = 𝑥) → (((pInvG‘𝐺)‘𝑥)‘𝑥) = (((pInvG‘𝐺)‘𝑥)‘𝐶))
931, 2, 3, 4, 5, 87, 88, 16, 88, 89, 92mireq 27607 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) ∧ (((pInvG‘𝐺)‘𝑥)‘𝐶) = 𝑥) → 𝑥 = 𝐶)
9486adantr 481 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) ∧ (((pInvG‘𝐺)‘𝑥)‘𝐶) = 𝑥) → 𝑥𝐶)
9594neneqd 2948 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) ∧ (((pInvG‘𝐺)‘𝑥)‘𝐶) = 𝑥) → ¬ 𝑥 = 𝐶)
9693, 95pm2.65da 815 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → ¬ (((pInvG‘𝐺)‘𝑥)‘𝐶) = 𝑥)
9796neqned 2950 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → (((pInvG‘𝐺)‘𝑥)‘𝐶) ≠ 𝑥)
9847ad3antrrr 728 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝑥 ∈ ((((pInvG‘𝐺)‘𝑥)‘𝐶)𝐼𝐶))
991, 3, 4, 54, 72, 85, 69, 86, 98btwnlng2 27562 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → (((pInvG‘𝐺)‘𝑥)‘𝐶) ∈ (𝑥𝐿𝐶))
1001, 3, 4, 54, 72, 85, 86, 69, 97, 99tglineelsb2 27574 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → (𝑥𝐿𝐶) = (𝑥𝐿(((pInvG‘𝐺)‘𝑥)‘𝐶)))
10128necomd 2999 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐶𝑥)
102101ad5antr 732 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝐶𝑥)
1031, 3, 4, 54, 85, 72, 102tglinecom 27577 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → (𝐶𝐿𝑥) = (𝑥𝐿𝐶))
1041, 3, 4, 54, 69, 72, 97tglinecom 27577 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → ((((pInvG‘𝐺)‘𝑥)‘𝐶)𝐿𝑥) = (𝑥𝐿(((pInvG‘𝐺)‘𝑥)‘𝐶)))
105100, 103, 1043eqtr4d 2786 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → (𝐶𝐿𝑥) = ((((pInvG‘𝐺)‘𝑥)‘𝐶)𝐿𝑥))
10677, 84, 1053eqtr4d 2786 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → (𝑡𝐿𝑝) = (𝐶𝐿𝑥))
10763, 106eqtr3d 2778 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → (𝐴𝐿𝑝) = (𝐶𝐿𝑥))
10831ad5antr 732 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵))
109107, 108eqbrtrd 5127 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵))
11039ad3antrrr 728 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → 𝐺 ∈ TarskiG)
11141ad3antrrr 728 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → 𝐴𝑃)
11245ad3antrrr 728 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → 𝑝𝑃)
11381ad3antrrr 728 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → 𝐴𝑝)
1141, 3, 4, 110, 111, 112, 113tgelrnln 27572 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → (𝐴𝐿𝑝) ∈ ran 𝐿)
11513ad5antr 732 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → (𝐴𝐿𝐵) ∈ ran 𝐿)
1161, 3, 4, 110, 111, 112, 113tglinerflx1 27575 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → 𝐴 ∈ (𝐴𝐿𝑝))
11711ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐴𝐵)
1181, 3, 4, 7, 20, 24, 117tglinerflx1 27575 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐴 ∈ (𝐴𝐿𝐵))
119118ad5antr 732 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → 𝐴 ∈ (𝐴𝐿𝐵))
120116, 119elind 4154 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → 𝐴 ∈ ((𝐴𝐿𝑝) ∩ (𝐴𝐿𝐵)))
1211, 3, 4, 110, 111, 112, 113tglinerflx2 27576 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → 𝑝 ∈ (𝐴𝐿𝑝))
12214ad5antr 732 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → 𝑥 ∈ (𝐴𝐿𝐵))
123113necomd 2999 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → 𝑝𝐴)
124 simpr 485 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → 𝑥𝐴)
12544ad3antrrr 728 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → 𝑥𝑃)
1261, 2, 3, 4, 39, 5, 21, 16, 8, 41, 44, 42, 45, 78, 79colperpexlem1 27672 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → ⟨“𝑥𝐴𝑝”⟩ ∈ (∟G‘𝐺))
127126ad3antrrr 728 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → ⟨“𝑥𝐴𝑝”⟩ ∈ (∟G‘𝐺))
1281, 2, 3, 4, 5, 110, 125, 111, 112, 127ragcom 27640 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → ⟨“𝑝𝐴𝑥”⟩ ∈ (∟G‘𝐺))
1291, 2, 3, 4, 110, 114, 115, 120, 121, 122, 123, 124, 128ragperp 27659 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵))
130109, 129pm2.61dane 3032 . . . . . . . . . 10 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) → (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵))
131118ad5antr 732 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝐴 ∈ (𝐴𝐿𝐵))
13262, 131eqeltrd 2838 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → 𝑡 ∈ (𝐴𝐿𝐵))
133132orcd 871 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥 = 𝐴) → (𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
13424ad5antr 732 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → 𝐵𝑃)
135117ad5antr 732 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → 𝐴𝐵)
136 simpllr 774 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → 𝑡𝑃)
137124necomd 2999 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → 𝐴𝑥)
138 simplrr 776 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → 𝑡 ∈ (𝐴𝐼𝑥))
1391, 3, 4, 110, 111, 125, 136, 137, 138btwnlng1 27561 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → 𝑡 ∈ (𝐴𝐿𝑥))
1401, 3, 4, 110, 111, 134, 135, 125, 124, 122, 136, 139tglineeltr 27573 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → 𝑡 ∈ (𝐴𝐿𝐵))
141140orcd 871 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) ∧ 𝑥𝐴) → (𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
142133, 141pm2.61dane 3032 . . . . . . . . . 10 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) → (𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
14339ad2antrr 724 . . . . . . . . . . 11 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) → 𝐺 ∈ TarskiG)
14445ad2antrr 724 . . . . . . . . . . 11 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) → 𝑝𝑃)
145 simplr 767 . . . . . . . . . . 11 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) → 𝑡𝑃)
14642ad2antrr 724 . . . . . . . . . . 11 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) → 𝐶𝑃)
147 simprl 769 . . . . . . . . . . 11 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) → 𝑡 ∈ (𝑝𝐼𝐶))
1481, 2, 3, 143, 144, 145, 146, 147tgbtwncom 27430 . . . . . . . . . 10 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) → 𝑡 ∈ (𝐶𝐼𝑝))
149130, 142, 148jca32 516 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥))) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
150149ex 413 . . . . . . . 8 ((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑡𝑃) → ((𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥)) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))))
151150reximdva 3165 . . . . . . 7 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → (∃𝑡𝑃 (𝑡 ∈ (𝑝𝐼𝐶) ∧ 𝑡 ∈ (𝐴𝐼𝑥)) → ∃𝑡𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))))
15253, 151mpd 15 . . . . . 6 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → ∃𝑡𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
153 r19.42v 3187 . . . . . 6 (∃𝑡𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))) ↔ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
154152, 153sylib 217 . . . . 5 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶))) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
155154ex 413 . . . 4 ((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) → ((((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶)) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))))
156155reximdva 3165 . . 3 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (∃𝑝𝑃 (((pInvG‘𝐺)‘𝐴)‘𝐶) = (((pInvG‘𝐺)‘𝑝)‘(((pInvG‘𝐺)‘𝑥)‘𝐶)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))))
15738, 156mpd 15 . 2 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
1581, 2, 3, 4, 6, 12, 17, 25footex 27663 . 2 (𝜑 → ∃𝑥 ∈ (𝐴𝐿𝐵)(𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵))
159157, 158r19.29a 3159 1 (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  wrex 3073   class class class wbr 5105  ran crn 5634  cfv 6496  (class class class)co 7357  ⟨“cs3 14731  Basecbs 17083  distcds 17142  TarskiGcstrkg 27369  Itvcitv 27375  LineGclng 27376  pInvGcmir 27594  ∟Gcrag 27635  ⟂Gcperpg 27637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-s2 14737  df-s3 14738  df-trkgc 27390  df-trkgb 27391  df-trkgcb 27392  df-trkg 27395  df-cgrg 27453  df-leg 27525  df-mir 27595  df-rag 27636  df-perpg 27638
This theorem is referenced by:  colperpex  27675
  Copyright terms: Public domain W3C validator