MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  times2 Structured version   Visualization version   GIF version

Theorem times2 11771
Description: A number times 2. (Contributed by NM, 16-Oct-2007.)
Assertion
Ref Expression
times2 (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴))

Proof of Theorem times2
StepHypRef Expression
1 2cn 11709 . . 3 2 ∈ ℂ
2 mulcom 10621 . . 3 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ) → (𝐴 · 2) = (2 · 𝐴))
31, 2mpan2 690 . 2 (𝐴 ∈ ℂ → (𝐴 · 2) = (2 · 𝐴))
4 2times 11770 . 2 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
53, 4eqtrd 2859 1 (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  (class class class)co 7149  cc 10533   + caddc 10538   · cmul 10540  2c2 11689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-ext 2796  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-mulcl 10597  ax-mulcom 10599  ax-mulass 10601  ax-distr 10602  ax-1rid 10605  ax-cnre 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-ex 1782  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-ral 3138  df-rex 3139  df-v 3482  df-un 3924  df-in 3926  df-ss 3936  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-iota 6302  df-fv 6351  df-ov 7152  df-2 11697
This theorem is referenced by:  times2i  11773  avglt1  11872  times2d  11878
  Copyright terms: Public domain W3C validator