| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > times2 | Structured version Visualization version GIF version | ||
| Description: A number times 2. (Contributed by NM, 16-Oct-2007.) |
| Ref | Expression |
|---|---|
| times2 | ⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12323 | . . 3 ⊢ 2 ∈ ℂ | |
| 2 | mulcom 11223 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ) → (𝐴 · 2) = (2 · 𝐴)) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (2 · 𝐴)) |
| 4 | 2times 12384 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
| 5 | 3, 4 | eqtrd 2769 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 (class class class)co 7413 ℂcc 11135 + caddc 11140 · cmul 11142 2c2 12303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-mulcl 11199 ax-mulcom 11201 ax-mulass 11203 ax-distr 11204 ax-1rid 11207 ax-cnre 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ov 7416 df-2 12311 |
| This theorem is referenced by: times2i 12387 avglt1 12487 times2d 12493 |
| Copyright terms: Public domain | W3C validator |