Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > times2 | Structured version Visualization version GIF version |
Description: A number times 2. (Contributed by NM, 16-Oct-2007.) |
Ref | Expression |
---|---|
times2 | ⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 12141 | . . 3 ⊢ 2 ∈ ℂ | |
2 | mulcom 11050 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ) → (𝐴 · 2) = (2 · 𝐴)) | |
3 | 1, 2 | mpan2 688 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (2 · 𝐴)) |
4 | 2times 12202 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
5 | 3, 4 | eqtrd 2776 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 (class class class)co 7329 ℂcc 10962 + caddc 10967 · cmul 10969 2c2 12121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-mulcl 11026 ax-mulcom 11028 ax-mulass 11030 ax-distr 11031 ax-1rid 11034 ax-cnre 11037 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-iota 6425 df-fv 6481 df-ov 7332 df-2 12129 |
This theorem is referenced by: times2i 12205 avglt1 12304 times2d 12310 |
Copyright terms: Public domain | W3C validator |