MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2times Structured version   Visualization version   GIF version

Theorem 2times 12259
Description: Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.)
Assertion
Ref Expression
2times (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))

Proof of Theorem 2times
StepHypRef Expression
1 df-2 12191 . . 3 2 = (1 + 1)
21oveq1i 7359 . 2 (2 · 𝐴) = ((1 + 1) · 𝐴)
3 1p1times 11287 . 2 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
42, 3eqtrid 2776 1 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7349  cc 11007  1c1 11010   + caddc 11012   · cmul 11014  2c2 12183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-mulcl 11071  ax-mulcom 11073  ax-mulass 11075  ax-distr 11076  ax-1rid 11079  ax-cnre 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-iota 6438  df-fv 6490  df-ov 7352  df-2 12191
This theorem is referenced by:  times2  12260  2timesi  12261  2txmxeqx  12263  2halves  12342  halfaddsub  12357  avglt2  12363  2timesd  12367  expubnd  14085  absmax  15237  sinmul  16081  sin2t  16086  cos2t  16087  sadadd2lem2  16361  pythagtriplem4  16731  pythagtriplem14  16740  pythagtriplem16  16742  2sqreultlem  27356  2sqreunnltlem  27359  cncph  30767  pellexlem2  42823  acongrep  42973  sub2times  45275  2timesgt  45290
  Copyright terms: Public domain W3C validator