Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2times | Structured version Visualization version GIF version |
Description: Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.) |
Ref | Expression |
---|---|
2times | ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 11966 | . . 3 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq1i 7265 | . 2 ⊢ (2 · 𝐴) = ((1 + 1) · 𝐴) |
3 | 1p1times 11076 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) | |
4 | 2, 3 | eqtrid 2790 | 1 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 1c1 10803 + caddc 10805 · cmul 10807 2c2 11958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-mulcom 10866 ax-mulass 10868 ax-distr 10869 ax-1rid 10872 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-2 11966 |
This theorem is referenced by: times2 12040 2timesi 12041 2txmxeqx 12043 2halves 12131 halfaddsub 12136 avglt2 12142 2timesd 12146 expubnd 13823 absmax 14969 sinmul 15809 sin2t 15814 cos2t 15815 sadadd2lem2 16085 pythagtriplem4 16448 pythagtriplem14 16457 pythagtriplem16 16459 2sqreultlem 26500 2sqreunnltlem 26503 cncph 29082 pellexlem2 40568 acongrep 40718 sub2times 42702 2timesgt 42716 |
Copyright terms: Public domain | W3C validator |