MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2times Structured version   Visualization version   GIF version

Theorem 2times 12317
Description: Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.)
Assertion
Ref Expression
2times (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))

Proof of Theorem 2times
StepHypRef Expression
1 df-2 12249 . . 3 2 = (1 + 1)
21oveq1i 7397 . 2 (2 · 𝐴) = ((1 + 1) · 𝐴)
3 1p1times 11345 . 2 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
42, 3eqtrid 2776 1 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7387  cc 11066  1c1 11069   + caddc 11071   · cmul 11073  2c2 12241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-mulcl 11130  ax-mulcom 11132  ax-mulass 11134  ax-distr 11135  ax-1rid 11138  ax-cnre 11141
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-2 12249
This theorem is referenced by:  times2  12318  2timesi  12319  2txmxeqx  12321  2halves  12400  halfaddsub  12415  avglt2  12421  2timesd  12425  expubnd  14143  absmax  15296  sinmul  16140  sin2t  16145  cos2t  16146  sadadd2lem2  16420  pythagtriplem4  16790  pythagtriplem14  16799  pythagtriplem16  16801  2sqreultlem  27358  2sqreunnltlem  27361  cncph  30748  pellexlem2  42818  acongrep  42969  sub2times  45271  2timesgt  45286
  Copyright terms: Public domain W3C validator