| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2times | Structured version Visualization version GIF version | ||
| Description: Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.) |
| Ref | Expression |
|---|---|
| 2times | ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12228 | . . 3 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq1i 7380 | . 2 ⊢ (2 · 𝐴) = ((1 + 1) · 𝐴) |
| 3 | 1p1times 11324 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) | |
| 4 | 2, 3 | eqtrid 2776 | 1 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7370 ℂcc 11045 1c1 11048 + caddc 11050 · cmul 11052 2c2 12220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-mulcl 11109 ax-mulcom 11111 ax-mulass 11113 ax-distr 11114 ax-1rid 11117 ax-cnre 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6453 df-fv 6508 df-ov 7373 df-2 12228 |
| This theorem is referenced by: times2 12297 2timesi 12298 2txmxeqx 12300 2halves 12379 halfaddsub 12394 avglt2 12400 2timesd 12404 expubnd 14122 absmax 15274 sinmul 16118 sin2t 16123 cos2t 16124 sadadd2lem2 16398 pythagtriplem4 16768 pythagtriplem14 16777 pythagtriplem16 16779 2sqreultlem 27393 2sqreunnltlem 27396 cncph 30800 pellexlem2 42813 acongrep 42964 sub2times 45266 2timesgt 45281 |
| Copyright terms: Public domain | W3C validator |