MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2times Structured version   Visualization version   GIF version

Theorem 2times 12256
Description: Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.)
Assertion
Ref Expression
2times (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))

Proof of Theorem 2times
StepHypRef Expression
1 df-2 12188 . . 3 2 = (1 + 1)
21oveq1i 7356 . 2 (2 · 𝐴) = ((1 + 1) · 𝐴)
3 1p1times 11284 . 2 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
42, 3eqtrid 2778 1 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  (class class class)co 7346  cc 11004  1c1 11007   + caddc 11009   · cmul 11011  2c2 12180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-mulcl 11068  ax-mulcom 11070  ax-mulass 11072  ax-distr 11073  ax-1rid 11076  ax-cnre 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349  df-2 12188
This theorem is referenced by:  times2  12257  2timesi  12258  2txmxeqx  12260  2halves  12339  halfaddsub  12354  avglt2  12360  2timesd  12364  expubnd  14085  absmax  15237  sinmul  16081  sin2t  16086  cos2t  16087  sadadd2lem2  16361  pythagtriplem4  16731  pythagtriplem14  16740  pythagtriplem16  16742  2sqreultlem  27385  2sqreunnltlem  27388  cncph  30799  pellexlem2  42922  acongrep  43072  sub2times  45373  2timesgt  45388
  Copyright terms: Public domain W3C validator