MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2times Structured version   Visualization version   GIF version

Theorem 2times 12429
Description: Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.)
Assertion
Ref Expression
2times (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))

Proof of Theorem 2times
StepHypRef Expression
1 df-2 12356 . . 3 2 = (1 + 1)
21oveq1i 7458 . 2 (2 · 𝐴) = ((1 + 1) · 𝐴)
3 1p1times 11461 . 2 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
42, 3eqtrid 2792 1 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  (class class class)co 7448  cc 11182  1c1 11185   + caddc 11187   · cmul 11189  2c2 12348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-mulcl 11246  ax-mulcom 11248  ax-mulass 11250  ax-distr 11251  ax-1rid 11254  ax-cnre 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-2 12356
This theorem is referenced by:  times2  12430  2timesi  12431  2txmxeqx  12433  2halves  12521  halfaddsub  12526  avglt2  12532  2timesd  12536  expubnd  14227  absmax  15378  sinmul  16220  sin2t  16225  cos2t  16226  sadadd2lem2  16496  pythagtriplem4  16866  pythagtriplem14  16875  pythagtriplem16  16877  2sqreultlem  27509  2sqreunnltlem  27512  cncph  30851  pellexlem2  42786  acongrep  42937  sub2times  45187  2timesgt  45203
  Copyright terms: Public domain W3C validator