| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2times | Structured version Visualization version GIF version | ||
| Description: Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.) |
| Ref | Expression |
|---|---|
| 2times | ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12188 | . . 3 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq1i 7356 | . 2 ⊢ (2 · 𝐴) = ((1 + 1) · 𝐴) |
| 3 | 1p1times 11284 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) | |
| 4 | 2, 3 | eqtrid 2778 | 1 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 1c1 11007 + caddc 11009 · cmul 11011 2c2 12180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-mulcl 11068 ax-mulcom 11070 ax-mulass 11072 ax-distr 11073 ax-1rid 11076 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-2 12188 |
| This theorem is referenced by: times2 12257 2timesi 12258 2txmxeqx 12260 2halves 12339 halfaddsub 12354 avglt2 12360 2timesd 12364 expubnd 14085 absmax 15237 sinmul 16081 sin2t 16086 cos2t 16087 sadadd2lem2 16361 pythagtriplem4 16731 pythagtriplem14 16740 pythagtriplem16 16742 2sqreultlem 27385 2sqreunnltlem 27388 cncph 30799 pellexlem2 42922 acongrep 43072 sub2times 45373 2timesgt 45388 |
| Copyright terms: Public domain | W3C validator |