| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2times | Structured version Visualization version GIF version | ||
| Description: Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.) |
| Ref | Expression |
|---|---|
| 2times | ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12191 | . . 3 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq1i 7359 | . 2 ⊢ (2 · 𝐴) = ((1 + 1) · 𝐴) |
| 3 | 1p1times 11287 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) | |
| 4 | 2, 3 | eqtrid 2776 | 1 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7349 ℂcc 11007 1c1 11010 + caddc 11012 · cmul 11014 2c2 12183 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-mulcl 11071 ax-mulcom 11073 ax-mulass 11075 ax-distr 11076 ax-1rid 11079 ax-cnre 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-2 12191 |
| This theorem is referenced by: times2 12260 2timesi 12261 2txmxeqx 12263 2halves 12342 halfaddsub 12357 avglt2 12363 2timesd 12367 expubnd 14085 absmax 15237 sinmul 16081 sin2t 16086 cos2t 16087 sadadd2lem2 16361 pythagtriplem4 16731 pythagtriplem14 16740 pythagtriplem16 16742 2sqreultlem 27356 2sqreunnltlem 27359 cncph 30767 pellexlem2 42823 acongrep 42973 sub2times 45275 2timesgt 45290 |
| Copyright terms: Public domain | W3C validator |