Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2times | Structured version Visualization version GIF version |
Description: Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.) |
Ref | Expression |
---|---|
2times | ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12138 | . . 3 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq1i 7348 | . 2 ⊢ (2 · 𝐴) = ((1 + 1) · 𝐴) |
3 | 1p1times 11248 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) | |
4 | 2, 3 | eqtrid 2788 | 1 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 (class class class)co 7338 ℂcc 10971 1c1 10974 + caddc 10976 · cmul 10978 2c2 12130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-mulcl 11035 ax-mulcom 11037 ax-mulass 11039 ax-distr 11040 ax-1rid 11043 ax-cnre 11046 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-iota 6432 df-fv 6488 df-ov 7341 df-2 12138 |
This theorem is referenced by: times2 12212 2timesi 12213 2txmxeqx 12215 2halves 12303 halfaddsub 12308 avglt2 12314 2timesd 12318 expubnd 13997 absmax 15141 sinmul 15981 sin2t 15986 cos2t 15987 sadadd2lem2 16257 pythagtriplem4 16618 pythagtriplem14 16627 pythagtriplem16 16629 2sqreultlem 26702 2sqreunnltlem 26705 cncph 29470 pellexlem2 40965 acongrep 41116 sub2times 43200 2timesgt 43214 |
Copyright terms: Public domain | W3C validator |