| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2times | Structured version Visualization version GIF version | ||
| Description: Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.) |
| Ref | Expression |
|---|---|
| 2times | ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12301 | . . 3 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq1i 7413 | . 2 ⊢ (2 · 𝐴) = ((1 + 1) · 𝐴) |
| 3 | 1p1times 11404 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) | |
| 4 | 2, 3 | eqtrid 2782 | 1 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 (class class class)co 7403 ℂcc 11125 1c1 11128 + caddc 11130 · cmul 11132 2c2 12293 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-mulcl 11189 ax-mulcom 11191 ax-mulass 11193 ax-distr 11194 ax-1rid 11197 ax-cnre 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-2 12301 |
| This theorem is referenced by: times2 12375 2timesi 12376 2txmxeqx 12378 2halves 12457 halfaddsub 12472 avglt2 12478 2timesd 12482 expubnd 14194 absmax 15346 sinmul 16188 sin2t 16193 cos2t 16194 sadadd2lem2 16467 pythagtriplem4 16837 pythagtriplem14 16846 pythagtriplem16 16848 2sqreultlem 27408 2sqreunnltlem 27411 cncph 30746 pellexlem2 42800 acongrep 42951 sub2times 45249 2timesgt 45265 gpg3nbgrvtxlem 48017 |
| Copyright terms: Public domain | W3C validator |