| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2times | Structured version Visualization version GIF version | ||
| Description: Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.) |
| Ref | Expression |
|---|---|
| 2times | ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12249 | . . 3 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq1i 7397 | . 2 ⊢ (2 · 𝐴) = ((1 + 1) · 𝐴) |
| 3 | 1p1times 11345 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) | |
| 4 | 2, 3 | eqtrid 2776 | 1 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 1c1 11069 + caddc 11071 · cmul 11073 2c2 12241 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-mulcom 11132 ax-mulass 11134 ax-distr 11135 ax-1rid 11138 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-2 12249 |
| This theorem is referenced by: times2 12318 2timesi 12319 2txmxeqx 12321 2halves 12400 halfaddsub 12415 avglt2 12421 2timesd 12425 expubnd 14143 absmax 15296 sinmul 16140 sin2t 16145 cos2t 16146 sadadd2lem2 16420 pythagtriplem4 16790 pythagtriplem14 16799 pythagtriplem16 16801 2sqreultlem 27358 2sqreunnltlem 27361 cncph 30748 pellexlem2 42818 acongrep 42969 sub2times 45271 2timesgt 45286 |
| Copyright terms: Public domain | W3C validator |