![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2timesi | Structured version Visualization version GIF version |
Description: Two times a number. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
2timesi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
2timesi | ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2timesi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | 2times 12429 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 + caddc 11187 · cmul 11189 2c2 12348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-mulcom 11248 ax-mulass 11250 ax-distr 11251 ax-1rid 11254 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-2 12356 |
This theorem is referenced by: 2t2e4 12457 nn0le2xi 12607 binom2i 14261 rddif 15389 abs3lemi 15459 iseraltlem2 15731 prmreclem6 16968 mod2xi 17116 numexp2x 17126 prmlem2 17167 iihalf2 24980 pcoass 25076 ovolunlem1a 25550 tangtx 26565 sinq34lt0t 26569 eff1o 26609 ang180lem2 26871 dvatan 26996 basellem2 27143 basellem5 27146 chtub 27274 bposlem9 27354 ex-dvds 30488 norm3lem 31181 normpari 31186 polid2i 31189 ballotth 34502 heiborlem6 37776 sqsumi 42270 dirkertrigeqlem1 46019 fourierdlem94 46121 fourierdlem102 46129 fourierdlem111 46138 fourierdlem112 46139 fourierdlem113 46140 fourierdlem114 46141 sqwvfoura 46149 sqwvfourb 46150 fouriersw 46152 fmtnorec3 47422 2t6m3t4e0 48073 zlmodzxzequa 48225 |
Copyright terms: Public domain | W3C validator |