| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2timesi | Structured version Visualization version GIF version | ||
| Description: Two times a number. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| 2timesi.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| 2timesi | ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2timesi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | 2times 12293 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 + caddc 11047 · cmul 11049 2c2 12217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-mulcom 11108 ax-mulass 11110 ax-distr 11111 ax-1rid 11114 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 |
| This theorem is referenced by: 2t2e4 12321 binom2i 14153 rddif 15283 abs3lemi 15353 iseraltlem2 15625 prmreclem6 16868 mod2xi 17016 numexp2x 17025 prmlem2 17066 iihalf2 24861 pcoass 24957 ovolunlem1a 25430 tangtx 26447 sinq34lt0t 26451 eff1o 26491 ang180lem2 26753 dvatan 26878 basellem2 27025 basellem5 27028 chtub 27156 bposlem9 27236 ex-dvds 30435 norm3lem 31128 normpari 31133 polid2i 31136 ballotth 34522 heiborlem6 37803 sqsumi 42262 dirkertrigeqlem1 46089 fourierdlem94 46191 fourierdlem102 46199 fourierdlem111 46208 fourierdlem112 46209 fourierdlem113 46210 fourierdlem114 46211 sqwvfoura 46219 sqwvfourb 46220 fouriersw 46222 fmtnorec3 47542 2t6m3t4e0 48329 zlmodzxzequa 48478 |
| Copyright terms: Public domain | W3C validator |