![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2timesi | Structured version Visualization version GIF version |
Description: Two times a number. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
2timesi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
2timesi | ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2timesi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | 2times 12400 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 + caddc 11156 · cmul 11158 2c2 12319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-mulcl 11215 ax-mulcom 11217 ax-mulass 11219 ax-distr 11220 ax-1rid 11223 ax-cnre 11226 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-2 12327 |
This theorem is referenced by: 2t2e4 12428 binom2i 14248 rddif 15376 abs3lemi 15446 iseraltlem2 15716 prmreclem6 16955 mod2xi 17103 numexp2x 17113 prmlem2 17154 iihalf2 24975 pcoass 25071 ovolunlem1a 25545 tangtx 26562 sinq34lt0t 26566 eff1o 26606 ang180lem2 26868 dvatan 26993 basellem2 27140 basellem5 27143 chtub 27271 bposlem9 27351 ex-dvds 30485 norm3lem 31178 normpari 31183 polid2i 31186 ballotth 34519 heiborlem6 37803 sqsumi 42295 dirkertrigeqlem1 46054 fourierdlem94 46156 fourierdlem102 46164 fourierdlem111 46173 fourierdlem112 46174 fourierdlem113 46175 fourierdlem114 46176 sqwvfoura 46184 sqwvfourb 46185 fouriersw 46187 fmtnorec3 47473 2t6m3t4e0 48193 zlmodzxzequa 48342 |
Copyright terms: Public domain | W3C validator |