Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2timesi | Structured version Visualization version GIF version |
Description: Two times a number. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
2timesi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
2timesi | ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2timesi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | 2times 12039 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 + caddc 10805 · cmul 10807 2c2 11958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-mulcom 10866 ax-mulass 10868 ax-distr 10869 ax-1rid 10872 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-2 11966 |
This theorem is referenced by: 2t2e4 12067 nn0le2xi 12217 binom2i 13856 rddif 14980 abs3lemi 15050 iseraltlem2 15322 prmreclem6 16550 mod2xi 16698 numexp2x 16708 prmlem2 16749 iihalf2 24002 pcoass 24093 ovolunlem1a 24565 tangtx 25567 sinq34lt0t 25571 eff1o 25610 ang180lem2 25865 dvatan 25990 basellem2 26136 basellem5 26139 chtub 26265 bposlem9 26345 ex-dvds 28721 norm3lem 29412 normpari 29417 polid2i 29420 ballotth 32404 heiborlem6 35901 sqsumi 40230 dirkertrigeqlem1 43529 fourierdlem94 43631 fourierdlem102 43639 fourierdlem111 43648 fourierdlem112 43649 fourierdlem113 43650 fourierdlem114 43651 sqwvfoura 43659 sqwvfourb 43660 fouriersw 43662 fmtnorec3 44888 2t6m3t4e0 45572 zlmodzxzequa 45725 |
Copyright terms: Public domain | W3C validator |