| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2timesi | Structured version Visualization version GIF version | ||
| Description: Two times a number. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| 2timesi.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| 2timesi | ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2timesi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | 2times 12256 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 + caddc 11009 · cmul 11011 2c2 12180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-mulcl 11068 ax-mulcom 11070 ax-mulass 11072 ax-distr 11073 ax-1rid 11076 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-2 12188 |
| This theorem is referenced by: 2t2e4 12284 binom2i 14119 rddif 15248 abs3lemi 15318 iseraltlem2 15590 prmreclem6 16833 mod2xi 16981 numexp2x 16990 prmlem2 17031 iihalf2 24855 pcoass 24951 ovolunlem1a 25424 tangtx 26441 sinq34lt0t 26445 eff1o 26485 ang180lem2 26747 dvatan 26872 basellem2 27019 basellem5 27022 chtub 27150 bposlem9 27230 ex-dvds 30436 norm3lem 31129 normpari 31134 polid2i 31137 ballotth 34551 heiborlem6 37866 sqsumi 42384 dirkertrigeqlem1 46206 fourierdlem94 46308 fourierdlem102 46316 fourierdlem111 46325 fourierdlem112 46326 fourierdlem113 46327 fourierdlem114 46328 sqwvfoura 46336 sqwvfourb 46337 fouriersw 46339 fmtnorec3 47658 2t6m3t4e0 48458 zlmodzxzequa 48607 |
| Copyright terms: Public domain | W3C validator |