| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2timesi | Structured version Visualization version GIF version | ||
| Description: Two times a number. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| 2timesi.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| 2timesi | ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2timesi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | 2times 12317 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 + caddc 11071 · cmul 11073 2c2 12241 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-mulcom 11132 ax-mulass 11134 ax-distr 11135 ax-1rid 11138 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-2 12249 |
| This theorem is referenced by: 2t2e4 12345 binom2i 14177 rddif 15307 abs3lemi 15377 iseraltlem2 15649 prmreclem6 16892 mod2xi 17040 numexp2x 17049 prmlem2 17090 iihalf2 24828 pcoass 24924 ovolunlem1a 25397 tangtx 26414 sinq34lt0t 26418 eff1o 26458 ang180lem2 26720 dvatan 26845 basellem2 26992 basellem5 26995 chtub 27123 bposlem9 27203 ex-dvds 30385 norm3lem 31078 normpari 31083 polid2i 31086 ballotth 34529 heiborlem6 37810 sqsumi 42269 dirkertrigeqlem1 46096 fourierdlem94 46198 fourierdlem102 46206 fourierdlem111 46215 fourierdlem112 46216 fourierdlem113 46217 fourierdlem114 46218 sqwvfoura 46226 sqwvfourb 46227 fouriersw 46229 fmtnorec3 47546 2t6m3t4e0 48333 zlmodzxzequa 48482 |
| Copyright terms: Public domain | W3C validator |