| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2timesi | Structured version Visualization version GIF version | ||
| Description: Two times a number. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| 2timesi.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| 2timesi | ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2timesi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | 2times 12293 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 + caddc 11047 · cmul 11049 2c2 12217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-mulcom 11108 ax-mulass 11110 ax-distr 11111 ax-1rid 11114 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 |
| This theorem is referenced by: 2t2e4 12321 binom2i 14153 rddif 15283 abs3lemi 15353 iseraltlem2 15625 prmreclem6 16868 mod2xi 17016 numexp2x 17025 prmlem2 17066 iihalf2 24804 pcoass 24900 ovolunlem1a 25373 tangtx 26390 sinq34lt0t 26394 eff1o 26434 ang180lem2 26696 dvatan 26821 basellem2 26968 basellem5 26971 chtub 27099 bposlem9 27179 ex-dvds 30358 norm3lem 31051 normpari 31056 polid2i 31059 ballotth 34502 heiborlem6 37783 sqsumi 42242 dirkertrigeqlem1 46069 fourierdlem94 46171 fourierdlem102 46179 fourierdlem111 46188 fourierdlem112 46189 fourierdlem113 46190 fourierdlem114 46191 sqwvfoura 46199 sqwvfourb 46200 fouriersw 46202 fmtnorec3 47522 2t6m3t4e0 48309 zlmodzxzequa 48458 |
| Copyright terms: Public domain | W3C validator |