| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2timesi | Structured version Visualization version GIF version | ||
| Description: Two times a number. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| 2timesi.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| 2timesi | ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2timesi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | 2times 12259 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7349 ℂcc 11007 + caddc 11012 · cmul 11014 2c2 12183 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-mulcl 11071 ax-mulcom 11073 ax-mulass 11075 ax-distr 11076 ax-1rid 11079 ax-cnre 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-2 12191 |
| This theorem is referenced by: 2t2e4 12287 binom2i 14119 rddif 15248 abs3lemi 15318 iseraltlem2 15590 prmreclem6 16833 mod2xi 16981 numexp2x 16990 prmlem2 17031 iihalf2 24826 pcoass 24922 ovolunlem1a 25395 tangtx 26412 sinq34lt0t 26416 eff1o 26456 ang180lem2 26718 dvatan 26843 basellem2 26990 basellem5 26993 chtub 27121 bposlem9 27201 ex-dvds 30400 norm3lem 31093 normpari 31098 polid2i 31101 ballotth 34506 heiborlem6 37800 sqsumi 42258 dirkertrigeqlem1 46083 fourierdlem94 46185 fourierdlem102 46193 fourierdlem111 46202 fourierdlem112 46203 fourierdlem113 46204 fourierdlem114 46205 sqwvfoura 46213 sqwvfourb 46214 fouriersw 46216 fmtnorec3 47536 2t6m3t4e0 48336 zlmodzxzequa 48485 |
| Copyright terms: Public domain | W3C validator |