Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2timesi | Structured version Visualization version GIF version |
Description: Two times a number. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
2timesi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
2timesi | ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2timesi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | 2times 12109 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 + caddc 10874 · cmul 10876 2c2 12028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-mulcl 10933 ax-mulcom 10935 ax-mulass 10937 ax-distr 10938 ax-1rid 10941 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-2 12036 |
This theorem is referenced by: 2t2e4 12137 nn0le2xi 12287 binom2i 13928 rddif 15052 abs3lemi 15122 iseraltlem2 15394 prmreclem6 16622 mod2xi 16770 numexp2x 16780 prmlem2 16821 iihalf2 24096 pcoass 24187 ovolunlem1a 24660 tangtx 25662 sinq34lt0t 25666 eff1o 25705 ang180lem2 25960 dvatan 26085 basellem2 26231 basellem5 26234 chtub 26360 bposlem9 26440 ex-dvds 28820 norm3lem 29511 normpari 29516 polid2i 29519 ballotth 32504 heiborlem6 35974 sqsumi 40309 dirkertrigeqlem1 43639 fourierdlem94 43741 fourierdlem102 43749 fourierdlem111 43758 fourierdlem112 43759 fourierdlem113 43760 fourierdlem114 43761 sqwvfoura 43769 sqwvfourb 43770 fouriersw 43772 fmtnorec3 45000 2t6m3t4e0 45684 zlmodzxzequa 45837 |
Copyright terms: Public domain | W3C validator |