| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2timesi | Structured version Visualization version GIF version | ||
| Description: Two times a number. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| 2timesi.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| 2timesi | ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2timesi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | 2times 12381 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7410 ℂcc 11132 + caddc 11137 · cmul 11139 2c2 12300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-mulcl 11196 ax-mulcom 11198 ax-mulass 11200 ax-distr 11201 ax-1rid 11204 ax-cnre 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-2 12308 |
| This theorem is referenced by: 2t2e4 12409 binom2i 14235 rddif 15364 abs3lemi 15434 iseraltlem2 15704 prmreclem6 16946 mod2xi 17094 numexp2x 17103 prmlem2 17144 iihalf2 24884 pcoass 24980 ovolunlem1a 25454 tangtx 26471 sinq34lt0t 26475 eff1o 26515 ang180lem2 26777 dvatan 26902 basellem2 27049 basellem5 27052 chtub 27180 bposlem9 27260 ex-dvds 30442 norm3lem 31135 normpari 31140 polid2i 31143 ballotth 34575 heiborlem6 37845 sqsumi 42298 dirkertrigeqlem1 46094 fourierdlem94 46196 fourierdlem102 46204 fourierdlem111 46213 fourierdlem112 46214 fourierdlem113 46215 fourierdlem114 46216 sqwvfoura 46224 sqwvfourb 46225 fouriersw 46227 fmtnorec3 47529 2t6m3t4e0 48290 zlmodzxzequa 48439 |
| Copyright terms: Public domain | W3C validator |