MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  times2i Structured version   Visualization version   GIF version

Theorem times2i 11459
Description: A number times 2. (Contributed by NM, 11-May-2004.)
Hypothesis
Ref Expression
2timesi.1 𝐴 ∈ ℂ
Assertion
Ref Expression
times2i (𝐴 · 2) = (𝐴 + 𝐴)

Proof of Theorem times2i
StepHypRef Expression
1 2timesi.1 . 2 𝐴 ∈ ℂ
2 times2 11457 . 2 (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴))
31, 2ax-mp 5 1 (𝐴 · 2) = (𝐴 + 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1653  wcel 2157  (class class class)co 6878  cc 10222   + caddc 10227   · cmul 10229  2c2 11368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-mulcl 10286  ax-mulcom 10288  ax-mulass 10290  ax-distr 10291  ax-1rid 10294  ax-cnre 10297
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-iota 6064  df-fv 6109  df-ov 6881  df-2 11376
This theorem is referenced by:  3t2e6  11486  4t2e8  11488  6t2e12  11889  7t2e14  11894  8t2e16  11900  9t2e18  11907  threehalves  30139  logi  32134  areaquad  38586
  Copyright terms: Public domain W3C validator