MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  times2i Structured version   Visualization version   GIF version

Theorem times2i 12377
Description: A number times 2. (Contributed by NM, 11-May-2004.)
Hypothesis
Ref Expression
2timesi.1 𝐴 ∈ ℂ
Assertion
Ref Expression
times2i (𝐴 · 2) = (𝐴 + 𝐴)

Proof of Theorem times2i
StepHypRef Expression
1 2timesi.1 . 2 𝐴 ∈ ℂ
2 times2 12375 . 2 (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴))
31, 2ax-mp 5 1 (𝐴 · 2) = (𝐴 + 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  (class class class)co 7403  cc 11125   + caddc 11130   · cmul 11132  2c2 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-mulcl 11189  ax-mulcom 11191  ax-mulass 11193  ax-distr 11194  ax-1rid 11197  ax-cnre 11200
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6483  df-fv 6538  df-ov 7406  df-2 12301
This theorem is referenced by:  3t2e6  12404  4t2e8  12406  6t2e12  12810  7t2e14  12815  8t2e16  12821  9t2e18  12828  logi  26546  threehalves  32835  areaquad  43187
  Copyright terms: Public domain W3C validator