MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  times2i Structured version   Visualization version   GIF version

Theorem times2i 12217
Description: A number times 2. (Contributed by NM, 11-May-2004.)
Hypothesis
Ref Expression
2timesi.1 𝐴 ∈ ℂ
Assertion
Ref Expression
times2i (𝐴 · 2) = (𝐴 + 𝐴)

Proof of Theorem times2i
StepHypRef Expression
1 2timesi.1 . 2 𝐴 ∈ ℂ
2 times2 12215 . 2 (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴))
31, 2ax-mp 5 1 (𝐴 · 2) = (𝐴 + 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  (class class class)co 7341  cc 10974   + caddc 10979   · cmul 10981  2c2 12133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-mulcl 11038  ax-mulcom 11040  ax-mulass 11042  ax-distr 11043  ax-1rid 11046  ax-cnre 11049
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-br 5097  df-iota 6435  df-fv 6491  df-ov 7344  df-2 12141
This theorem is referenced by:  3t2e6  12244  4t2e8  12246  6t2e12  12646  7t2e14  12651  8t2e16  12657  9t2e18  12664  threehalves  31474  logi  33990  areaquad  41362
  Copyright terms: Public domain W3C validator