![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > times2i | Structured version Visualization version GIF version |
Description: A number times 2. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
2timesi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
times2i | ⊢ (𝐴 · 2) = (𝐴 + 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2timesi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | times2 12400 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 2) = (𝐴 + 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 + caddc 11155 · cmul 11157 2c2 12318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-mulcl 11214 ax-mulcom 11216 ax-mulass 11218 ax-distr 11219 ax-1rid 11222 ax-cnre 11225 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-2 12326 |
This theorem is referenced by: 3t2e6 12429 4t2e8 12431 6t2e12 12834 7t2e14 12839 8t2e16 12845 9t2e18 12852 logi 26643 threehalves 32881 areaquad 43204 |
Copyright terms: Public domain | W3C validator |