Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > times2i | Structured version Visualization version GIF version |
Description: A number times 2. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
2timesi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
times2i | ⊢ (𝐴 · 2) = (𝐴 + 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2timesi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | times2 12215 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 2) = (𝐴 + 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 (class class class)co 7341 ℂcc 10974 + caddc 10979 · cmul 10981 2c2 12133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-mulcl 11038 ax-mulcom 11040 ax-mulass 11042 ax-distr 11043 ax-1rid 11046 ax-cnre 11049 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-iota 6435 df-fv 6491 df-ov 7344 df-2 12141 |
This theorem is referenced by: 3t2e6 12244 4t2e8 12246 6t2e12 12646 7t2e14 12651 8t2e16 12657 9t2e18 12664 threehalves 31474 logi 33990 areaquad 41362 |
Copyright terms: Public domain | W3C validator |