Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > times2d | Structured version Visualization version GIF version |
Description: A number times 2. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
2timesd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
times2d | ⊢ (𝜑 → (𝐴 · 2) = (𝐴 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2timesd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | times2 12099 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 · 2) = (𝐴 + 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 (class class class)co 7269 ℂcc 10858 + caddc 10863 · cmul 10865 2c2 12017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-resscn 10917 ax-1cn 10918 ax-icn 10919 ax-addcl 10920 ax-mulcl 10922 ax-mulcom 10924 ax-mulass 10926 ax-distr 10927 ax-1rid 10930 ax-cnre 10933 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5076 df-iota 6386 df-fv 6436 df-ov 7272 df-2 12025 |
This theorem is referenced by: div4p1lem1div2 12217 climcndslem1 15550 climcndslem2 15551 sadcaddlem 16153 dvexp3 25131 chordthmlem 25971 chordthmlem2 25972 chordthmlem4 25974 logfaclbnd 26359 rplogsumlem1 26621 nexple 31964 aks4d1p1p5 40070 fltne 40468 |
Copyright terms: Public domain | W3C validator |