MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  times2d Structured version   Visualization version   GIF version

Theorem times2d 11483
Description: A number times 2. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
2timesd.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
times2d (𝜑 → (𝐴 · 2) = (𝐴 + 𝐴))

Proof of Theorem times2d
StepHypRef Expression
1 2timesd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 times2 11353 . 2 (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴))
31, 2syl 17 1 (𝜑 → (𝐴 · 2) = (𝐴 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  (class class class)co 6796  cc 10140   + caddc 10145   · cmul 10147  2c2 11276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rrecex 10214  ax-cnre 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-iota 5993  df-fv 6038  df-ov 6799  df-2 11285
This theorem is referenced by:  div4p1lem1div2  11494  climcndslem1  14788  climcndslem2  14789  sadcaddlem  15387  dvexp3  23961  chordthmlem  24780  chordthmlem2  24781  chordthmlem4  24783  logfaclbnd  25168  rplogsumlem1  25394  nexple  30411
  Copyright terms: Public domain W3C validator