MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  times2d Structured version   Visualization version   GIF version

Theorem times2d 12455
Description: A number times 2. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
2timesd.1 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
Assertion
Ref Expression
times2d (๐œ‘ โ†’ (๐ด ยท 2) = (๐ด + ๐ด))

Proof of Theorem times2d
StepHypRef Expression
1 2timesd.1 . 2 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
2 times2 12348 . 2 (๐ด โˆˆ โ„‚ โ†’ (๐ด ยท 2) = (๐ด + ๐ด))
31, 2syl 17 1 (๐œ‘ โ†’ (๐ด ยท 2) = (๐ด + ๐ด))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   = wceq 1541   โˆˆ wcel 2106  (class class class)co 7408  โ„‚cc 11107   + caddc 11112   ยท cmul 11114  2c2 12266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-mulcl 11171  ax-mulcom 11173  ax-mulass 11175  ax-distr 11176  ax-1rid 11179  ax-cnre 11182
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411  df-2 12274
This theorem is referenced by:  div4p1lem1div2  12466  climcndslem1  15794  climcndslem2  15795  sadcaddlem  16397  dvexp3  25494  chordthmlem  26334  chordthmlem2  26335  chordthmlem4  26337  logfaclbnd  26722  rplogsumlem1  26984  nexple  33002  aks4d1p1p5  40935  fltne  41387
  Copyright terms: Public domain W3C validator