| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > times2d | Structured version Visualization version GIF version | ||
| Description: A number times 2. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| 2timesd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| times2d | ⊢ (𝜑 → (𝐴 · 2) = (𝐴 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2timesd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | times2 12252 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 · 2) = (𝐴 + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7341 ℂcc 10999 + caddc 11004 · cmul 11006 2c2 12175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-mulcl 11063 ax-mulcom 11065 ax-mulass 11067 ax-distr 11068 ax-1rid 11071 ax-cnre 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-2 12183 |
| This theorem is referenced by: div4p1lem1div2 12371 climcndslem1 15751 climcndslem2 15752 sadcaddlem 16363 dvexp3 25904 chordthmlem 26764 chordthmlem2 26765 chordthmlem4 26767 logfaclbnd 27155 rplogsumlem1 27417 nexple 32819 aks4d1p1p5 42108 fltne 42677 |
| Copyright terms: Public domain | W3C validator |