MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  times2d Structured version   Visualization version   GIF version

Theorem times2d 12206
Description: A number times 2. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
2timesd.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
times2d (𝜑 → (𝐴 · 2) = (𝐴 + 𝐴))

Proof of Theorem times2d
StepHypRef Expression
1 2timesd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 times2 12099 . 2 (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴))
31, 2syl 17 1 (𝜑 → (𝐴 · 2) = (𝐴 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  (class class class)co 7269  cc 10858   + caddc 10863   · cmul 10865  2c2 12017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-resscn 10917  ax-1cn 10918  ax-icn 10919  ax-addcl 10920  ax-mulcl 10922  ax-mulcom 10924  ax-mulass 10926  ax-distr 10927  ax-1rid 10930  ax-cnre 10933
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3433  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-br 5076  df-iota 6386  df-fv 6436  df-ov 7272  df-2 12025
This theorem is referenced by:  div4p1lem1div2  12217  climcndslem1  15550  climcndslem2  15551  sadcaddlem  16153  dvexp3  25131  chordthmlem  25971  chordthmlem2  25972  chordthmlem4  25974  logfaclbnd  26359  rplogsumlem1  26621  nexple  31964  aks4d1p1p5  40070  fltne  40468
  Copyright terms: Public domain W3C validator