Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  times2d Structured version   Visualization version   GIF version

Theorem times2d 11873
 Description: A number times 2. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
2timesd.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
times2d (𝜑 → (𝐴 · 2) = (𝐴 + 𝐴))

Proof of Theorem times2d
StepHypRef Expression
1 2timesd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 times2 11766 . 2 (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴))
31, 2syl 17 1 (𝜑 → (𝐴 · 2) = (𝐴 + 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2112  (class class class)co 7139  ℂcc 10528   + caddc 10533   · cmul 10535  2c2 11684 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-ext 2773  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-mulcl 10592  ax-mulcom 10594  ax-mulass 10596  ax-distr 10597  ax-1rid 10600  ax-cnre 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-ex 1782  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-ral 3114  df-rex 3115  df-v 3446  df-un 3889  df-in 3891  df-ss 3901  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-iota 6287  df-fv 6336  df-ov 7142  df-2 11692 This theorem is referenced by:  div4p1lem1div2  11884  climcndslem1  15199  climcndslem2  15200  sadcaddlem  15799  dvexp3  24584  chordthmlem  25421  chordthmlem2  25422  chordthmlem4  25424  logfaclbnd  25809  rplogsumlem1  26071  nexple  31376  fltne  39603
 Copyright terms: Public domain W3C validator