MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  times2d Structured version   Visualization version   GIF version

Theorem times2d 12508
Description: A number times 2. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
2timesd.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
times2d (𝜑 → (𝐴 · 2) = (𝐴 + 𝐴))

Proof of Theorem times2d
StepHypRef Expression
1 2timesd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 times2 12401 . 2 (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴))
31, 2syl 17 1 (𝜑 → (𝐴 · 2) = (𝐴 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  (class class class)co 7431  cc 11151   + caddc 11156   · cmul 11158  2c2 12319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-mulcl 11215  ax-mulcom 11217  ax-mulass 11219  ax-distr 11220  ax-1rid 11223  ax-cnre 11226
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-2 12327
This theorem is referenced by:  div4p1lem1div2  12519  climcndslem1  15882  climcndslem2  15883  sadcaddlem  16491  dvexp3  26031  chordthmlem  26890  chordthmlem2  26891  chordthmlem4  26893  logfaclbnd  27281  rplogsumlem1  27543  nexple  33990  aks4d1p1p5  42057  fltne  42631
  Copyright terms: Public domain W3C validator