| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > times2d | Structured version Visualization version GIF version | ||
| Description: A number times 2. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| 2timesd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| times2d | ⊢ (𝜑 → (𝐴 · 2) = (𝐴 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2timesd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | times2 12268 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 · 2) = (𝐴 + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 (class class class)co 7355 ℂcc 11015 + caddc 11020 · cmul 11022 2c2 12191 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-mulcl 11079 ax-mulcom 11081 ax-mulass 11083 ax-distr 11084 ax-1rid 11087 ax-cnre 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-2 12199 |
| This theorem is referenced by: div4p1lem1div2 12387 climcndslem1 15763 climcndslem2 15764 sadcaddlem 16375 dvexp3 25929 chordthmlem 26789 chordthmlem2 26790 chordthmlem4 26792 logfaclbnd 27180 rplogsumlem1 27442 nexple 32853 aks4d1p1p5 42241 fltne 42802 |
| Copyright terms: Public domain | W3C validator |