![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resttop | Structured version Visualization version GIF version |
Description: A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89. 𝐴 is normally a subset of the base set of 𝐽. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.) |
Ref | Expression |
---|---|
resttop | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgrest 22985 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝐽 ↾t 𝐴)) = ((topGen‘𝐽) ↾t 𝐴)) | |
2 | tgtop 22798 | . . . . 5 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘𝐽) = 𝐽) |
4 | 3 | oveq1d 7416 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → ((topGen‘𝐽) ↾t 𝐴) = (𝐽 ↾t 𝐴)) |
5 | 1, 4 | eqtrd 2764 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝐽 ↾t 𝐴)) = (𝐽 ↾t 𝐴)) |
6 | topbas 22797 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐽 ∈ TopBases) | |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → 𝐽 ∈ TopBases) |
8 | restbas 22984 | . . 3 ⊢ (𝐽 ∈ TopBases → (𝐽 ↾t 𝐴) ∈ TopBases) | |
9 | tgcl 22794 | . . 3 ⊢ ((𝐽 ↾t 𝐴) ∈ TopBases → (topGen‘(𝐽 ↾t 𝐴)) ∈ Top) | |
10 | 7, 8, 9 | 3syl 18 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝐽 ↾t 𝐴)) ∈ Top) |
11 | 5, 10 | eqeltrrd 2826 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ‘cfv 6533 (class class class)co 7401 ↾t crest 17365 topGenctg 17382 Topctop 22717 TopBasesctb 22770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-en 8936 df-fin 8939 df-fi 9402 df-rest 17367 df-topgen 17388 df-top 22718 df-bases 22771 |
This theorem is referenced by: resttopon 22987 resttopon2 22994 rest0 22995 restcld 22998 neitr 23006 restcls 23007 restntr 23008 ordtrest 23028 cmpsub 23226 fiuncmp 23230 1stcrest 23279 subislly 23307 llyrest 23311 nllyrest 23312 toplly 23316 cldllycmp 23321 kgencmp2 23372 llycmpkgen2 23376 1stckgen 23380 txkgen 23478 cnextfres1 23894 zdis 24654 cnmpopc 24771 dvbss 25752 dvreslem 25760 dvres2lem 25761 dvcnp2 25771 dvcnp2OLD 25772 dvmptres 25817 ulmdvlem3 26255 psercn 26280 abelth 26295 zarmxt1 33349 ordtrestNEW 33390 cvxpconn 34722 cvmscld 34753 ptrest 36977 poimirlem29 37007 cnambfre 37026 limcresiooub 44843 limcresioolb 44844 cncfuni 45087 cncfiooicclem1 45094 fourierdlem32 45340 fourierdlem33 45341 fourierdlem48 45355 fourierdlem49 45356 fouriersw 45432 iscnrm3lem1 47754 iscnrm3rlem7 47767 |
Copyright terms: Public domain | W3C validator |