| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resttop | Structured version Visualization version GIF version | ||
| Description: A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89. 𝐴 is normally a subset of the base set of 𝐽. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.) |
| Ref | Expression |
|---|---|
| resttop | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgrest 23069 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝐽 ↾t 𝐴)) = ((topGen‘𝐽) ↾t 𝐴)) | |
| 2 | tgtop 22883 | . . . . 5 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘𝐽) = 𝐽) |
| 4 | 3 | oveq1d 7356 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → ((topGen‘𝐽) ↾t 𝐴) = (𝐽 ↾t 𝐴)) |
| 5 | 1, 4 | eqtrd 2766 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝐽 ↾t 𝐴)) = (𝐽 ↾t 𝐴)) |
| 6 | topbas 22882 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐽 ∈ TopBases) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → 𝐽 ∈ TopBases) |
| 8 | restbas 23068 | . . 3 ⊢ (𝐽 ∈ TopBases → (𝐽 ↾t 𝐴) ∈ TopBases) | |
| 9 | tgcl 22879 | . . 3 ⊢ ((𝐽 ↾t 𝐴) ∈ TopBases → (topGen‘(𝐽 ↾t 𝐴)) ∈ Top) | |
| 10 | 7, 8, 9 | 3syl 18 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝐽 ↾t 𝐴)) ∈ Top) |
| 11 | 5, 10 | eqeltrrd 2832 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 ↾t crest 17319 topGenctg 17336 Topctop 22803 TopBasesctb 22855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-en 8865 df-fin 8868 df-fi 9290 df-rest 17321 df-topgen 17342 df-top 22804 df-bases 22856 |
| This theorem is referenced by: resttopon 23071 resttopon2 23078 rest0 23079 restcld 23082 neitr 23090 restcls 23091 restntr 23092 ordtrest 23112 cmpsub 23310 fiuncmp 23314 1stcrest 23363 subislly 23391 llyrest 23395 nllyrest 23396 toplly 23400 cldllycmp 23405 kgencmp2 23456 llycmpkgen2 23460 1stckgen 23464 txkgen 23562 cnextfres1 23978 zdis 24727 cnmpopc 24844 dvbss 25824 dvreslem 25832 dvres2lem 25833 dvcnp2 25843 dvcnp2OLD 25844 dvmptres 25889 ulmdvlem3 26333 psercn 26358 abelth 26373 zarmxt1 33885 ordtrestNEW 33926 cvxpconn 35278 cvmscld 35309 ptrest 37659 poimirlem29 37689 cnambfre 37708 limcresiooub 45680 limcresioolb 45681 cncfuni 45924 cncfiooicclem1 45931 fourierdlem32 46177 fourierdlem33 46178 fourierdlem48 46192 fourierdlem49 46193 fouriersw 46269 iscnrm3lem1 48965 iscnrm3rlem7 48977 |
| Copyright terms: Public domain | W3C validator |