| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resttop | Structured version Visualization version GIF version | ||
| Description: A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89. 𝐴 is normally a subset of the base set of 𝐽. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.) |
| Ref | Expression |
|---|---|
| resttop | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgrest 23053 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝐽 ↾t 𝐴)) = ((topGen‘𝐽) ↾t 𝐴)) | |
| 2 | tgtop 22867 | . . . . 5 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘𝐽) = 𝐽) |
| 4 | 3 | oveq1d 7405 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → ((topGen‘𝐽) ↾t 𝐴) = (𝐽 ↾t 𝐴)) |
| 5 | 1, 4 | eqtrd 2765 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝐽 ↾t 𝐴)) = (𝐽 ↾t 𝐴)) |
| 6 | topbas 22866 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐽 ∈ TopBases) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → 𝐽 ∈ TopBases) |
| 8 | restbas 23052 | . . 3 ⊢ (𝐽 ∈ TopBases → (𝐽 ↾t 𝐴) ∈ TopBases) | |
| 9 | tgcl 22863 | . . 3 ⊢ ((𝐽 ↾t 𝐴) ∈ TopBases → (topGen‘(𝐽 ↾t 𝐴)) ∈ Top) | |
| 10 | 7, 8, 9 | 3syl 18 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝐽 ↾t 𝐴)) ∈ Top) |
| 11 | 5, 10 | eqeltrrd 2830 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 ↾t crest 17390 topGenctg 17407 Topctop 22787 TopBasesctb 22839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-en 8922 df-fin 8925 df-fi 9369 df-rest 17392 df-topgen 17413 df-top 22788 df-bases 22840 |
| This theorem is referenced by: resttopon 23055 resttopon2 23062 rest0 23063 restcld 23066 neitr 23074 restcls 23075 restntr 23076 ordtrest 23096 cmpsub 23294 fiuncmp 23298 1stcrest 23347 subislly 23375 llyrest 23379 nllyrest 23380 toplly 23384 cldllycmp 23389 kgencmp2 23440 llycmpkgen2 23444 1stckgen 23448 txkgen 23546 cnextfres1 23962 zdis 24712 cnmpopc 24829 dvbss 25809 dvreslem 25817 dvres2lem 25818 dvcnp2 25828 dvcnp2OLD 25829 dvmptres 25874 ulmdvlem3 26318 psercn 26343 abelth 26358 zarmxt1 33877 ordtrestNEW 33918 cvxpconn 35236 cvmscld 35267 ptrest 37620 poimirlem29 37650 cnambfre 37669 limcresiooub 45647 limcresioolb 45648 cncfuni 45891 cncfiooicclem1 45898 fourierdlem32 46144 fourierdlem33 46145 fourierdlem48 46159 fourierdlem49 46160 fouriersw 46236 iscnrm3lem1 48926 iscnrm3rlem7 48938 |
| Copyright terms: Public domain | W3C validator |