Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resttop | Structured version Visualization version GIF version |
Description: A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89. 𝐴 is normally a subset of the base set of 𝐽. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.) |
Ref | Expression |
---|---|
resttop | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgrest 21912 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝐽 ↾t 𝐴)) = ((topGen‘𝐽) ↾t 𝐴)) | |
2 | tgtop 21726 | . . . . 5 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
3 | 2 | adantr 484 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘𝐽) = 𝐽) |
4 | 3 | oveq1d 7187 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → ((topGen‘𝐽) ↾t 𝐴) = (𝐽 ↾t 𝐴)) |
5 | 1, 4 | eqtrd 2773 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝐽 ↾t 𝐴)) = (𝐽 ↾t 𝐴)) |
6 | topbas 21725 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐽 ∈ TopBases) | |
7 | 6 | adantr 484 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → 𝐽 ∈ TopBases) |
8 | restbas 21911 | . . 3 ⊢ (𝐽 ∈ TopBases → (𝐽 ↾t 𝐴) ∈ TopBases) | |
9 | tgcl 21722 | . . 3 ⊢ ((𝐽 ↾t 𝐴) ∈ TopBases → (topGen‘(𝐽 ↾t 𝐴)) ∈ Top) | |
10 | 7, 8, 9 | 3syl 18 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝐽 ↾t 𝐴)) ∈ Top) |
11 | 5, 10 | eqeltrrd 2834 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ‘cfv 6339 (class class class)co 7172 ↾t crest 16799 topGenctg 16816 Topctop 21646 TopBasesctb 21698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7175 df-oprab 7176 df-mpo 7177 df-om 7602 df-1st 7716 df-2nd 7717 df-en 8558 df-fin 8561 df-fi 8950 df-rest 16801 df-topgen 16822 df-top 21647 df-bases 21699 |
This theorem is referenced by: resttopon 21914 resttopon2 21921 rest0 21922 restcld 21925 neitr 21933 restcls 21934 restntr 21935 ordtrest 21955 cmpsub 22153 fiuncmp 22157 1stcrest 22206 subislly 22234 llyrest 22238 nllyrest 22239 toplly 22243 cldllycmp 22248 kgencmp2 22299 llycmpkgen2 22303 1stckgen 22307 txkgen 22405 cnextfres1 22821 zdis 23570 cnmpopc 23682 dvbss 24655 dvreslem 24663 dvres2lem 24664 dvcnp2 24674 dvmptres 24717 ulmdvlem3 25151 psercn 25175 abelth 25190 zarmxt1 31404 ordtrestNEW 31445 cvxpconn 32777 cvmscld 32808 ptrest 35421 poimirlem29 35451 cnambfre 35470 limcresiooub 42747 limcresioolb 42748 cncfuni 42991 cncfiooicclem1 42998 fourierdlem32 43244 fourierdlem33 43245 fourierdlem48 43259 fourierdlem49 43260 fouriersw 43336 iscnrm3lem1 45778 iscnrm3rlem7 45791 |
Copyright terms: Public domain | W3C validator |