MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resttop Structured version   Visualization version   GIF version

Theorem resttop 23168
Description: A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89. 𝐴 is normally a subset of the base set of 𝐽. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
resttop ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Top)

Proof of Theorem resttop
StepHypRef Expression
1 tgrest 23167 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (topGen‘(𝐽t 𝐴)) = ((topGen‘𝐽) ↾t 𝐴))
2 tgtop 22980 . . . . 5 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
32adantr 480 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (topGen‘𝐽) = 𝐽)
43oveq1d 7446 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → ((topGen‘𝐽) ↾t 𝐴) = (𝐽t 𝐴))
51, 4eqtrd 2777 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (topGen‘(𝐽t 𝐴)) = (𝐽t 𝐴))
6 topbas 22979 . . . 4 (𝐽 ∈ Top → 𝐽 ∈ TopBases)
76adantr 480 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → 𝐽 ∈ TopBases)
8 restbas 23166 . . 3 (𝐽 ∈ TopBases → (𝐽t 𝐴) ∈ TopBases)
9 tgcl 22976 . . 3 ((𝐽t 𝐴) ∈ TopBases → (topGen‘(𝐽t 𝐴)) ∈ Top)
107, 8, 93syl 18 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (topGen‘(𝐽t 𝐴)) ∈ Top)
115, 10eqeltrrd 2842 1 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  t crest 17465  topGenctg 17482  Topctop 22899  TopBasesctb 22952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-en 8986  df-fin 8989  df-fi 9451  df-rest 17467  df-topgen 17488  df-top 22900  df-bases 22953
This theorem is referenced by:  resttopon  23169  resttopon2  23176  rest0  23177  restcld  23180  neitr  23188  restcls  23189  restntr  23190  ordtrest  23210  cmpsub  23408  fiuncmp  23412  1stcrest  23461  subislly  23489  llyrest  23493  nllyrest  23494  toplly  23498  cldllycmp  23503  kgencmp2  23554  llycmpkgen2  23558  1stckgen  23562  txkgen  23660  cnextfres1  24076  zdis  24838  cnmpopc  24955  dvbss  25936  dvreslem  25944  dvres2lem  25945  dvcnp2  25955  dvcnp2OLD  25956  dvmptres  26001  ulmdvlem3  26445  psercn  26470  abelth  26485  zarmxt1  33879  ordtrestNEW  33920  cvxpconn  35247  cvmscld  35278  ptrest  37626  poimirlem29  37656  cnambfre  37675  limcresiooub  45657  limcresioolb  45658  cncfuni  45901  cncfiooicclem1  45908  fourierdlem32  46154  fourierdlem33  46155  fourierdlem48  46169  fourierdlem49  46170  fouriersw  46246  iscnrm3lem1  48831  iscnrm3rlem7  48843
  Copyright terms: Public domain W3C validator