MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resttop Structured version   Visualization version   GIF version

Theorem resttop 23045
Description: A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89. 𝐴 is normally a subset of the base set of 𝐽. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
resttop ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Top)

Proof of Theorem resttop
StepHypRef Expression
1 tgrest 23044 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (topGen‘(𝐽t 𝐴)) = ((topGen‘𝐽) ↾t 𝐴))
2 tgtop 22858 . . . . 5 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
32adantr 480 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (topGen‘𝐽) = 𝐽)
43oveq1d 7364 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → ((topGen‘𝐽) ↾t 𝐴) = (𝐽t 𝐴))
51, 4eqtrd 2764 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (topGen‘(𝐽t 𝐴)) = (𝐽t 𝐴))
6 topbas 22857 . . . 4 (𝐽 ∈ Top → 𝐽 ∈ TopBases)
76adantr 480 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → 𝐽 ∈ TopBases)
8 restbas 23043 . . 3 (𝐽 ∈ TopBases → (𝐽t 𝐴) ∈ TopBases)
9 tgcl 22854 . . 3 ((𝐽t 𝐴) ∈ TopBases → (topGen‘(𝐽t 𝐴)) ∈ Top)
107, 8, 93syl 18 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (topGen‘(𝐽t 𝐴)) ∈ Top)
115, 10eqeltrrd 2829 1 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  t crest 17324  topGenctg 17341  Topctop 22778  TopBasesctb 22830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-en 8873  df-fin 8876  df-fi 9301  df-rest 17326  df-topgen 17347  df-top 22779  df-bases 22831
This theorem is referenced by:  resttopon  23046  resttopon2  23053  rest0  23054  restcld  23057  neitr  23065  restcls  23066  restntr  23067  ordtrest  23087  cmpsub  23285  fiuncmp  23289  1stcrest  23338  subislly  23366  llyrest  23370  nllyrest  23371  toplly  23375  cldllycmp  23380  kgencmp2  23431  llycmpkgen2  23435  1stckgen  23439  txkgen  23537  cnextfres1  23953  zdis  24703  cnmpopc  24820  dvbss  25800  dvreslem  25808  dvres2lem  25809  dvcnp2  25819  dvcnp2OLD  25820  dvmptres  25865  ulmdvlem3  26309  psercn  26334  abelth  26349  zarmxt1  33847  ordtrestNEW  33888  cvxpconn  35215  cvmscld  35246  ptrest  37599  poimirlem29  37629  cnambfre  37648  limcresiooub  45623  limcresioolb  45624  cncfuni  45867  cncfiooicclem1  45874  fourierdlem32  46120  fourierdlem33  46121  fourierdlem48  46135  fourierdlem49  46136  fouriersw  46212  iscnrm3lem1  48918  iscnrm3rlem7  48930
  Copyright terms: Public domain W3C validator