| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resttop | Structured version Visualization version GIF version | ||
| Description: A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89. 𝐴 is normally a subset of the base set of 𝐽. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.) |
| Ref | Expression |
|---|---|
| resttop | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgrest 23095 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝐽 ↾t 𝐴)) = ((topGen‘𝐽) ↾t 𝐴)) | |
| 2 | tgtop 22909 | . . . . 5 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘𝐽) = 𝐽) |
| 4 | 3 | oveq1d 7418 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → ((topGen‘𝐽) ↾t 𝐴) = (𝐽 ↾t 𝐴)) |
| 5 | 1, 4 | eqtrd 2770 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝐽 ↾t 𝐴)) = (𝐽 ↾t 𝐴)) |
| 6 | topbas 22908 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐽 ∈ TopBases) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → 𝐽 ∈ TopBases) |
| 8 | restbas 23094 | . . 3 ⊢ (𝐽 ∈ TopBases → (𝐽 ↾t 𝐴) ∈ TopBases) | |
| 9 | tgcl 22905 | . . 3 ⊢ ((𝐽 ↾t 𝐴) ∈ TopBases → (topGen‘(𝐽 ↾t 𝐴)) ∈ Top) | |
| 10 | 7, 8, 9 | 3syl 18 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝐽 ↾t 𝐴)) ∈ Top) |
| 11 | 5, 10 | eqeltrrd 2835 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 ↾t crest 17432 topGenctg 17449 Topctop 22829 TopBasesctb 22881 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-en 8958 df-fin 8961 df-fi 9421 df-rest 17434 df-topgen 17455 df-top 22830 df-bases 22882 |
| This theorem is referenced by: resttopon 23097 resttopon2 23104 rest0 23105 restcld 23108 neitr 23116 restcls 23117 restntr 23118 ordtrest 23138 cmpsub 23336 fiuncmp 23340 1stcrest 23389 subislly 23417 llyrest 23421 nllyrest 23422 toplly 23426 cldllycmp 23431 kgencmp2 23482 llycmpkgen2 23486 1stckgen 23490 txkgen 23588 cnextfres1 24004 zdis 24754 cnmpopc 24871 dvbss 25852 dvreslem 25860 dvres2lem 25861 dvcnp2 25871 dvcnp2OLD 25872 dvmptres 25917 ulmdvlem3 26361 psercn 26386 abelth 26401 zarmxt1 33857 ordtrestNEW 33898 cvxpconn 35210 cvmscld 35241 ptrest 37589 poimirlem29 37619 cnambfre 37638 limcresiooub 45619 limcresioolb 45620 cncfuni 45863 cncfiooicclem1 45870 fourierdlem32 46116 fourierdlem33 46117 fourierdlem48 46131 fourierdlem49 46132 fouriersw 46208 iscnrm3lem1 48856 iscnrm3rlem7 48868 |
| Copyright terms: Public domain | W3C validator |