MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resttop Structured version   Visualization version   GIF version

Theorem resttop 23023
Description: A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89. 𝐴 is normally a subset of the base set of 𝐽. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
resttop ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Top)

Proof of Theorem resttop
StepHypRef Expression
1 tgrest 23022 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (topGen‘(𝐽t 𝐴)) = ((topGen‘𝐽) ↾t 𝐴))
2 tgtop 22836 . . . . 5 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
32adantr 480 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (topGen‘𝐽) = 𝐽)
43oveq1d 7384 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → ((topGen‘𝐽) ↾t 𝐴) = (𝐽t 𝐴))
51, 4eqtrd 2764 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (topGen‘(𝐽t 𝐴)) = (𝐽t 𝐴))
6 topbas 22835 . . . 4 (𝐽 ∈ Top → 𝐽 ∈ TopBases)
76adantr 480 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → 𝐽 ∈ TopBases)
8 restbas 23021 . . 3 (𝐽 ∈ TopBases → (𝐽t 𝐴) ∈ TopBases)
9 tgcl 22832 . . 3 ((𝐽t 𝐴) ∈ TopBases → (topGen‘(𝐽t 𝐴)) ∈ Top)
107, 8, 93syl 18 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (topGen‘(𝐽t 𝐴)) ∈ Top)
115, 10eqeltrrd 2829 1 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  t crest 17359  topGenctg 17376  Topctop 22756  TopBasesctb 22808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-en 8896  df-fin 8899  df-fi 9338  df-rest 17361  df-topgen 17382  df-top 22757  df-bases 22809
This theorem is referenced by:  resttopon  23024  resttopon2  23031  rest0  23032  restcld  23035  neitr  23043  restcls  23044  restntr  23045  ordtrest  23065  cmpsub  23263  fiuncmp  23267  1stcrest  23316  subislly  23344  llyrest  23348  nllyrest  23349  toplly  23353  cldllycmp  23358  kgencmp2  23409  llycmpkgen2  23413  1stckgen  23417  txkgen  23515  cnextfres1  23931  zdis  24681  cnmpopc  24798  dvbss  25778  dvreslem  25786  dvres2lem  25787  dvcnp2  25797  dvcnp2OLD  25798  dvmptres  25843  ulmdvlem3  26287  psercn  26312  abelth  26327  zarmxt1  33843  ordtrestNEW  33884  cvxpconn  35202  cvmscld  35233  ptrest  37586  poimirlem29  37616  cnambfre  37635  limcresiooub  45613  limcresioolb  45614  cncfuni  45857  cncfiooicclem1  45864  fourierdlem32  46110  fourierdlem33  46111  fourierdlem48  46125  fourierdlem49  46126  fouriersw  46202  iscnrm3lem1  48895  iscnrm3rlem7  48907
  Copyright terms: Public domain W3C validator