MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dis1stc Structured version   Visualization version   GIF version

Theorem dis1stc 23424
Description: A discrete space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
dis1stc (𝑋𝑉 → 𝒫 𝑋 ∈ 1stω)

Proof of Theorem dis1stc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vsnex 5402 . . . . . . . 8 {𝑥} ∈ V
2 distop 22920 . . . . . . . 8 ({𝑥} ∈ V → 𝒫 {𝑥} ∈ Top)
31, 2ax-mp 5 . . . . . . 7 𝒫 {𝑥} ∈ Top
4 tgtop 22898 . . . . . . 7 (𝒫 {𝑥} ∈ Top → (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥})
53, 4ax-mp 5 . . . . . 6 (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥}
6 topbas 22897 . . . . . . . 8 (𝒫 {𝑥} ∈ Top → 𝒫 {𝑥} ∈ TopBases)
73, 6ax-mp 5 . . . . . . 7 𝒫 {𝑥} ∈ TopBases
8 snfi 9052 . . . . . . . . . 10 {𝑥} ∈ Fin
9 pwfi 9324 . . . . . . . . . 10 ({𝑥} ∈ Fin ↔ 𝒫 {𝑥} ∈ Fin)
108, 9mpbi 230 . . . . . . . . 9 𝒫 {𝑥} ∈ Fin
11 isfinite 9659 . . . . . . . . 9 (𝒫 {𝑥} ∈ Fin ↔ 𝒫 {𝑥} ≺ ω)
1210, 11mpbi 230 . . . . . . . 8 𝒫 {𝑥} ≺ ω
13 sdomdom 8989 . . . . . . . 8 (𝒫 {𝑥} ≺ ω → 𝒫 {𝑥} ≼ ω)
1412, 13ax-mp 5 . . . . . . 7 𝒫 {𝑥} ≼ ω
15 2ndci 23373 . . . . . . 7 ((𝒫 {𝑥} ∈ TopBases ∧ 𝒫 {𝑥} ≼ ω) → (topGen‘𝒫 {𝑥}) ∈ 2ndω)
167, 14, 15mp2an 692 . . . . . 6 (topGen‘𝒫 {𝑥}) ∈ 2ndω
175, 16eqeltrri 2830 . . . . 5 𝒫 {𝑥} ∈ 2ndω
18 2ndc1stc 23376 . . . . 5 (𝒫 {𝑥} ∈ 2ndω → 𝒫 {𝑥} ∈ 1stω)
1917, 18ax-mp 5 . . . 4 𝒫 {𝑥} ∈ 1stω
2019rgenw 3054 . . 3 𝑥𝑋 𝒫 {𝑥} ∈ 1stω
21 dislly 23422 . . 3 (𝑋𝑉 → (𝒫 𝑋 ∈ Locally 1stω ↔ ∀𝑥𝑋 𝒫 {𝑥} ∈ 1stω))
2220, 21mpbiri 258 . 2 (𝑋𝑉 → 𝒫 𝑋 ∈ Locally 1stω)
23 lly1stc 23421 . 2 Locally 1stω = 1stω
2422, 23eleqtrdi 2843 1 (𝑋𝑉 → 𝒫 𝑋 ∈ 1stω)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wral 3050  Vcvv 3457  𝒫 cpw 4573  {csn 4599   class class class wbr 5117  cfv 6528  ωcom 7856  cdom 8952  csdm 8953  Fincfn 8954  topGenctg 17438  Topctop 22818  TopBasesctb 22870  1stωc1stc 23362  2ndωc2ndc 23363  Locally clly 23389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-inf2 9648
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-er 8714  df-map 8837  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-fi 9418  df-card 9946  df-acn 9949  df-rest 17423  df-topgen 17444  df-top 22819  df-topon 22836  df-bases 22871  df-1stc 23364  df-2ndc 23365  df-lly 23391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator