| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dis1stc | Structured version Visualization version GIF version | ||
| Description: A discrete space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| dis1stc | ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ 1stω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex 5373 | . . . . . . . 8 ⊢ {𝑥} ∈ V | |
| 2 | distop 22880 | . . . . . . . 8 ⊢ ({𝑥} ∈ V → 𝒫 {𝑥} ∈ Top) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 {𝑥} ∈ Top |
| 4 | tgtop 22858 | . . . . . . 7 ⊢ (𝒫 {𝑥} ∈ Top → (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥}) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥} |
| 6 | topbas 22857 | . . . . . . . 8 ⊢ (𝒫 {𝑥} ∈ Top → 𝒫 {𝑥} ∈ TopBases) | |
| 7 | 3, 6 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 {𝑥} ∈ TopBases |
| 8 | snfi 8968 | . . . . . . . . . 10 ⊢ {𝑥} ∈ Fin | |
| 9 | pwfi 9208 | . . . . . . . . . 10 ⊢ ({𝑥} ∈ Fin ↔ 𝒫 {𝑥} ∈ Fin) | |
| 10 | 8, 9 | mpbi 230 | . . . . . . . . 9 ⊢ 𝒫 {𝑥} ∈ Fin |
| 11 | isfinite 9548 | . . . . . . . . 9 ⊢ (𝒫 {𝑥} ∈ Fin ↔ 𝒫 {𝑥} ≺ ω) | |
| 12 | 10, 11 | mpbi 230 | . . . . . . . 8 ⊢ 𝒫 {𝑥} ≺ ω |
| 13 | sdomdom 8905 | . . . . . . . 8 ⊢ (𝒫 {𝑥} ≺ ω → 𝒫 {𝑥} ≼ ω) | |
| 14 | 12, 13 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 {𝑥} ≼ ω |
| 15 | 2ndci 23333 | . . . . . . 7 ⊢ ((𝒫 {𝑥} ∈ TopBases ∧ 𝒫 {𝑥} ≼ ω) → (topGen‘𝒫 {𝑥}) ∈ 2ndω) | |
| 16 | 7, 14, 15 | mp2an 692 | . . . . . 6 ⊢ (topGen‘𝒫 {𝑥}) ∈ 2ndω |
| 17 | 5, 16 | eqeltrri 2825 | . . . . 5 ⊢ 𝒫 {𝑥} ∈ 2ndω |
| 18 | 2ndc1stc 23336 | . . . . 5 ⊢ (𝒫 {𝑥} ∈ 2ndω → 𝒫 {𝑥} ∈ 1stω) | |
| 19 | 17, 18 | ax-mp 5 | . . . 4 ⊢ 𝒫 {𝑥} ∈ 1stω |
| 20 | 19 | rgenw 3048 | . . 3 ⊢ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 1stω |
| 21 | dislly 23382 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝒫 𝑋 ∈ Locally 1stω ↔ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 1stω)) | |
| 22 | 20, 21 | mpbiri 258 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Locally 1stω) |
| 23 | lly1stc 23381 | . 2 ⊢ Locally 1stω = 1stω | |
| 24 | 22, 23 | eleqtrdi 2838 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ 1stω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 𝒫 cpw 4551 {csn 4577 class class class wbr 5092 ‘cfv 6482 ωcom 7799 ≼ cdom 8870 ≺ csdm 8871 Fincfn 8872 topGenctg 17341 Topctop 22778 TopBasesctb 22830 1stωc1stc 23322 2ndωc2ndc 23323 Locally clly 23349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fi 9301 df-card 9835 df-acn 9838 df-rest 17326 df-topgen 17347 df-top 22779 df-topon 22796 df-bases 22831 df-1stc 23324 df-2ndc 23325 df-lly 23351 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |