MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dis1stc Structured version   Visualization version   GIF version

Theorem dis1stc 23523
Description: A discrete space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
dis1stc (𝑋𝑉 → 𝒫 𝑋 ∈ 1stω)

Proof of Theorem dis1stc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vsnex 5440 . . . . . . . 8 {𝑥} ∈ V
2 distop 23018 . . . . . . . 8 ({𝑥} ∈ V → 𝒫 {𝑥} ∈ Top)
31, 2ax-mp 5 . . . . . . 7 𝒫 {𝑥} ∈ Top
4 tgtop 22996 . . . . . . 7 (𝒫 {𝑥} ∈ Top → (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥})
53, 4ax-mp 5 . . . . . 6 (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥}
6 topbas 22995 . . . . . . . 8 (𝒫 {𝑥} ∈ Top → 𝒫 {𝑥} ∈ TopBases)
73, 6ax-mp 5 . . . . . . 7 𝒫 {𝑥} ∈ TopBases
8 snfi 9082 . . . . . . . . . 10 {𝑥} ∈ Fin
9 pwfi 9355 . . . . . . . . . 10 ({𝑥} ∈ Fin ↔ 𝒫 {𝑥} ∈ Fin)
108, 9mpbi 230 . . . . . . . . 9 𝒫 {𝑥} ∈ Fin
11 isfinite 9690 . . . . . . . . 9 (𝒫 {𝑥} ∈ Fin ↔ 𝒫 {𝑥} ≺ ω)
1210, 11mpbi 230 . . . . . . . 8 𝒫 {𝑥} ≺ ω
13 sdomdom 9019 . . . . . . . 8 (𝒫 {𝑥} ≺ ω → 𝒫 {𝑥} ≼ ω)
1412, 13ax-mp 5 . . . . . . 7 𝒫 {𝑥} ≼ ω
15 2ndci 23472 . . . . . . 7 ((𝒫 {𝑥} ∈ TopBases ∧ 𝒫 {𝑥} ≼ ω) → (topGen‘𝒫 {𝑥}) ∈ 2ndω)
167, 14, 15mp2an 692 . . . . . 6 (topGen‘𝒫 {𝑥}) ∈ 2ndω
175, 16eqeltrri 2836 . . . . 5 𝒫 {𝑥} ∈ 2ndω
18 2ndc1stc 23475 . . . . 5 (𝒫 {𝑥} ∈ 2ndω → 𝒫 {𝑥} ∈ 1stω)
1917, 18ax-mp 5 . . . 4 𝒫 {𝑥} ∈ 1stω
2019rgenw 3063 . . 3 𝑥𝑋 𝒫 {𝑥} ∈ 1stω
21 dislly 23521 . . 3 (𝑋𝑉 → (𝒫 𝑋 ∈ Locally 1stω ↔ ∀𝑥𝑋 𝒫 {𝑥} ∈ 1stω))
2220, 21mpbiri 258 . 2 (𝑋𝑉 → 𝒫 𝑋 ∈ Locally 1stω)
23 lly1stc 23520 . 2 Locally 1stω = 1stω
2422, 23eleqtrdi 2849 1 (𝑋𝑉 → 𝒫 𝑋 ∈ 1stω)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  𝒫 cpw 4605  {csn 4631   class class class wbr 5148  cfv 6563  ωcom 7887  cdom 8982  csdm 8983  Fincfn 8984  topGenctg 17484  Topctop 22915  TopBasesctb 22968  1stωc1stc 23461  2ndωc2ndc 23462  Locally clly 23488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-card 9977  df-acn 9980  df-rest 17469  df-topgen 17490  df-top 22916  df-topon 22933  df-bases 22969  df-1stc 23463  df-2ndc 23464  df-lly 23490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator