| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dis1stc | Structured version Visualization version GIF version | ||
| Description: A discrete space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| dis1stc | ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ 1stω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex 5392 | . . . . . . . 8 ⊢ {𝑥} ∈ V | |
| 2 | distop 22889 | . . . . . . . 8 ⊢ ({𝑥} ∈ V → 𝒫 {𝑥} ∈ Top) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 {𝑥} ∈ Top |
| 4 | tgtop 22867 | . . . . . . 7 ⊢ (𝒫 {𝑥} ∈ Top → (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥}) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥} |
| 6 | topbas 22866 | . . . . . . . 8 ⊢ (𝒫 {𝑥} ∈ Top → 𝒫 {𝑥} ∈ TopBases) | |
| 7 | 3, 6 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 {𝑥} ∈ TopBases |
| 8 | snfi 9017 | . . . . . . . . . 10 ⊢ {𝑥} ∈ Fin | |
| 9 | pwfi 9275 | . . . . . . . . . 10 ⊢ ({𝑥} ∈ Fin ↔ 𝒫 {𝑥} ∈ Fin) | |
| 10 | 8, 9 | mpbi 230 | . . . . . . . . 9 ⊢ 𝒫 {𝑥} ∈ Fin |
| 11 | isfinite 9612 | . . . . . . . . 9 ⊢ (𝒫 {𝑥} ∈ Fin ↔ 𝒫 {𝑥} ≺ ω) | |
| 12 | 10, 11 | mpbi 230 | . . . . . . . 8 ⊢ 𝒫 {𝑥} ≺ ω |
| 13 | sdomdom 8954 | . . . . . . . 8 ⊢ (𝒫 {𝑥} ≺ ω → 𝒫 {𝑥} ≼ ω) | |
| 14 | 12, 13 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 {𝑥} ≼ ω |
| 15 | 2ndci 23342 | . . . . . . 7 ⊢ ((𝒫 {𝑥} ∈ TopBases ∧ 𝒫 {𝑥} ≼ ω) → (topGen‘𝒫 {𝑥}) ∈ 2ndω) | |
| 16 | 7, 14, 15 | mp2an 692 | . . . . . 6 ⊢ (topGen‘𝒫 {𝑥}) ∈ 2ndω |
| 17 | 5, 16 | eqeltrri 2826 | . . . . 5 ⊢ 𝒫 {𝑥} ∈ 2ndω |
| 18 | 2ndc1stc 23345 | . . . . 5 ⊢ (𝒫 {𝑥} ∈ 2ndω → 𝒫 {𝑥} ∈ 1stω) | |
| 19 | 17, 18 | ax-mp 5 | . . . 4 ⊢ 𝒫 {𝑥} ∈ 1stω |
| 20 | 19 | rgenw 3049 | . . 3 ⊢ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 1stω |
| 21 | dislly 23391 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝒫 𝑋 ∈ Locally 1stω ↔ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 1stω)) | |
| 22 | 20, 21 | mpbiri 258 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Locally 1stω) |
| 23 | lly1stc 23390 | . 2 ⊢ Locally 1stω = 1stω | |
| 24 | 22, 23 | eleqtrdi 2839 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ 1stω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 𝒫 cpw 4566 {csn 4592 class class class wbr 5110 ‘cfv 6514 ωcom 7845 ≼ cdom 8919 ≺ csdm 8920 Fincfn 8921 topGenctg 17407 Topctop 22787 TopBasesctb 22839 1stωc1stc 23331 2ndωc2ndc 23332 Locally clly 23358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fi 9369 df-card 9899 df-acn 9902 df-rest 17392 df-topgen 17413 df-top 22788 df-topon 22805 df-bases 22840 df-1stc 23333 df-2ndc 23334 df-lly 23360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |