MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dis1stc Structured version   Visualization version   GIF version

Theorem dis1stc 23393
Description: A discrete space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
dis1stc (𝑋𝑉 → 𝒫 𝑋 ∈ 1stω)

Proof of Theorem dis1stc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vsnex 5392 . . . . . . . 8 {𝑥} ∈ V
2 distop 22889 . . . . . . . 8 ({𝑥} ∈ V → 𝒫 {𝑥} ∈ Top)
31, 2ax-mp 5 . . . . . . 7 𝒫 {𝑥} ∈ Top
4 tgtop 22867 . . . . . . 7 (𝒫 {𝑥} ∈ Top → (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥})
53, 4ax-mp 5 . . . . . 6 (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥}
6 topbas 22866 . . . . . . . 8 (𝒫 {𝑥} ∈ Top → 𝒫 {𝑥} ∈ TopBases)
73, 6ax-mp 5 . . . . . . 7 𝒫 {𝑥} ∈ TopBases
8 snfi 9017 . . . . . . . . . 10 {𝑥} ∈ Fin
9 pwfi 9275 . . . . . . . . . 10 ({𝑥} ∈ Fin ↔ 𝒫 {𝑥} ∈ Fin)
108, 9mpbi 230 . . . . . . . . 9 𝒫 {𝑥} ∈ Fin
11 isfinite 9612 . . . . . . . . 9 (𝒫 {𝑥} ∈ Fin ↔ 𝒫 {𝑥} ≺ ω)
1210, 11mpbi 230 . . . . . . . 8 𝒫 {𝑥} ≺ ω
13 sdomdom 8954 . . . . . . . 8 (𝒫 {𝑥} ≺ ω → 𝒫 {𝑥} ≼ ω)
1412, 13ax-mp 5 . . . . . . 7 𝒫 {𝑥} ≼ ω
15 2ndci 23342 . . . . . . 7 ((𝒫 {𝑥} ∈ TopBases ∧ 𝒫 {𝑥} ≼ ω) → (topGen‘𝒫 {𝑥}) ∈ 2ndω)
167, 14, 15mp2an 692 . . . . . 6 (topGen‘𝒫 {𝑥}) ∈ 2ndω
175, 16eqeltrri 2826 . . . . 5 𝒫 {𝑥} ∈ 2ndω
18 2ndc1stc 23345 . . . . 5 (𝒫 {𝑥} ∈ 2ndω → 𝒫 {𝑥} ∈ 1stω)
1917, 18ax-mp 5 . . . 4 𝒫 {𝑥} ∈ 1stω
2019rgenw 3049 . . 3 𝑥𝑋 𝒫 {𝑥} ∈ 1stω
21 dislly 23391 . . 3 (𝑋𝑉 → (𝒫 𝑋 ∈ Locally 1stω ↔ ∀𝑥𝑋 𝒫 {𝑥} ∈ 1stω))
2220, 21mpbiri 258 . 2 (𝑋𝑉 → 𝒫 𝑋 ∈ Locally 1stω)
23 lly1stc 23390 . 2 Locally 1stω = 1stω
2422, 23eleqtrdi 2839 1 (𝑋𝑉 → 𝒫 𝑋 ∈ 1stω)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  𝒫 cpw 4566  {csn 4592   class class class wbr 5110  cfv 6514  ωcom 7845  cdom 8919  csdm 8920  Fincfn 8921  topGenctg 17407  Topctop 22787  TopBasesctb 22839  1stωc1stc 23331  2ndωc2ndc 23332  Locally clly 23358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-card 9899  df-acn 9902  df-rest 17392  df-topgen 17413  df-top 22788  df-topon 22805  df-bases 22840  df-1stc 23333  df-2ndc 23334  df-lly 23360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator