| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dis1stc | Structured version Visualization version GIF version | ||
| Description: A discrete space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| dis1stc | ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ 1stω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex 5402 | . . . . . . . 8 ⊢ {𝑥} ∈ V | |
| 2 | distop 22920 | . . . . . . . 8 ⊢ ({𝑥} ∈ V → 𝒫 {𝑥} ∈ Top) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 {𝑥} ∈ Top |
| 4 | tgtop 22898 | . . . . . . 7 ⊢ (𝒫 {𝑥} ∈ Top → (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥}) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥} |
| 6 | topbas 22897 | . . . . . . . 8 ⊢ (𝒫 {𝑥} ∈ Top → 𝒫 {𝑥} ∈ TopBases) | |
| 7 | 3, 6 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 {𝑥} ∈ TopBases |
| 8 | snfi 9052 | . . . . . . . . . 10 ⊢ {𝑥} ∈ Fin | |
| 9 | pwfi 9324 | . . . . . . . . . 10 ⊢ ({𝑥} ∈ Fin ↔ 𝒫 {𝑥} ∈ Fin) | |
| 10 | 8, 9 | mpbi 230 | . . . . . . . . 9 ⊢ 𝒫 {𝑥} ∈ Fin |
| 11 | isfinite 9659 | . . . . . . . . 9 ⊢ (𝒫 {𝑥} ∈ Fin ↔ 𝒫 {𝑥} ≺ ω) | |
| 12 | 10, 11 | mpbi 230 | . . . . . . . 8 ⊢ 𝒫 {𝑥} ≺ ω |
| 13 | sdomdom 8989 | . . . . . . . 8 ⊢ (𝒫 {𝑥} ≺ ω → 𝒫 {𝑥} ≼ ω) | |
| 14 | 12, 13 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 {𝑥} ≼ ω |
| 15 | 2ndci 23373 | . . . . . . 7 ⊢ ((𝒫 {𝑥} ∈ TopBases ∧ 𝒫 {𝑥} ≼ ω) → (topGen‘𝒫 {𝑥}) ∈ 2ndω) | |
| 16 | 7, 14, 15 | mp2an 692 | . . . . . 6 ⊢ (topGen‘𝒫 {𝑥}) ∈ 2ndω |
| 17 | 5, 16 | eqeltrri 2830 | . . . . 5 ⊢ 𝒫 {𝑥} ∈ 2ndω |
| 18 | 2ndc1stc 23376 | . . . . 5 ⊢ (𝒫 {𝑥} ∈ 2ndω → 𝒫 {𝑥} ∈ 1stω) | |
| 19 | 17, 18 | ax-mp 5 | . . . 4 ⊢ 𝒫 {𝑥} ∈ 1stω |
| 20 | 19 | rgenw 3054 | . . 3 ⊢ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 1stω |
| 21 | dislly 23422 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝒫 𝑋 ∈ Locally 1stω ↔ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 1stω)) | |
| 22 | 20, 21 | mpbiri 258 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Locally 1stω) |
| 23 | lly1stc 23421 | . 2 ⊢ Locally 1stω = 1stω | |
| 24 | 22, 23 | eleqtrdi 2843 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ 1stω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∀wral 3050 Vcvv 3457 𝒫 cpw 4573 {csn 4599 class class class wbr 5117 ‘cfv 6528 ωcom 7856 ≼ cdom 8952 ≺ csdm 8953 Fincfn 8954 topGenctg 17438 Topctop 22818 TopBasesctb 22870 1stωc1stc 23362 2ndωc2ndc 23363 Locally clly 23389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-inf2 9648 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-se 5605 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-isom 6537 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-er 8714 df-map 8837 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-fi 9418 df-card 9946 df-acn 9949 df-rest 17423 df-topgen 17444 df-top 22819 df-topon 22836 df-bases 22871 df-1stc 23364 df-2ndc 23365 df-lly 23391 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |