| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dis1stc | Structured version Visualization version GIF version | ||
| Description: A discrete space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| dis1stc | ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ 1stω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex 5370 | . . . . . . . 8 ⊢ {𝑥} ∈ V | |
| 2 | distop 22910 | . . . . . . . 8 ⊢ ({𝑥} ∈ V → 𝒫 {𝑥} ∈ Top) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 {𝑥} ∈ Top |
| 4 | tgtop 22888 | . . . . . . 7 ⊢ (𝒫 {𝑥} ∈ Top → (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥}) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥} |
| 6 | topbas 22887 | . . . . . . . 8 ⊢ (𝒫 {𝑥} ∈ Top → 𝒫 {𝑥} ∈ TopBases) | |
| 7 | 3, 6 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 {𝑥} ∈ TopBases |
| 8 | snfi 8965 | . . . . . . . . . 10 ⊢ {𝑥} ∈ Fin | |
| 9 | pwfi 9203 | . . . . . . . . . 10 ⊢ ({𝑥} ∈ Fin ↔ 𝒫 {𝑥} ∈ Fin) | |
| 10 | 8, 9 | mpbi 230 | . . . . . . . . 9 ⊢ 𝒫 {𝑥} ∈ Fin |
| 11 | isfinite 9542 | . . . . . . . . 9 ⊢ (𝒫 {𝑥} ∈ Fin ↔ 𝒫 {𝑥} ≺ ω) | |
| 12 | 10, 11 | mpbi 230 | . . . . . . . 8 ⊢ 𝒫 {𝑥} ≺ ω |
| 13 | sdomdom 8902 | . . . . . . . 8 ⊢ (𝒫 {𝑥} ≺ ω → 𝒫 {𝑥} ≼ ω) | |
| 14 | 12, 13 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 {𝑥} ≼ ω |
| 15 | 2ndci 23363 | . . . . . . 7 ⊢ ((𝒫 {𝑥} ∈ TopBases ∧ 𝒫 {𝑥} ≼ ω) → (topGen‘𝒫 {𝑥}) ∈ 2ndω) | |
| 16 | 7, 14, 15 | mp2an 692 | . . . . . 6 ⊢ (topGen‘𝒫 {𝑥}) ∈ 2ndω |
| 17 | 5, 16 | eqeltrri 2828 | . . . . 5 ⊢ 𝒫 {𝑥} ∈ 2ndω |
| 18 | 2ndc1stc 23366 | . . . . 5 ⊢ (𝒫 {𝑥} ∈ 2ndω → 𝒫 {𝑥} ∈ 1stω) | |
| 19 | 17, 18 | ax-mp 5 | . . . 4 ⊢ 𝒫 {𝑥} ∈ 1stω |
| 20 | 19 | rgenw 3051 | . . 3 ⊢ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 1stω |
| 21 | dislly 23412 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝒫 𝑋 ∈ Locally 1stω ↔ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 1stω)) | |
| 22 | 20, 21 | mpbiri 258 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Locally 1stω) |
| 23 | lly1stc 23411 | . 2 ⊢ Locally 1stω = 1stω | |
| 24 | 22, 23 | eleqtrdi 2841 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ 1stω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 𝒫 cpw 4547 {csn 4573 class class class wbr 5089 ‘cfv 6481 ωcom 7796 ≼ cdom 8867 ≺ csdm 8868 Fincfn 8869 topGenctg 17341 Topctop 22808 TopBasesctb 22860 1stωc1stc 23352 2ndωc2ndc 23353 Locally clly 23379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-card 9832 df-acn 9835 df-rest 17326 df-topgen 17347 df-top 22809 df-topon 22826 df-bases 22861 df-1stc 23354 df-2ndc 23355 df-lly 23381 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |