| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dis1stc | Structured version Visualization version GIF version | ||
| Description: A discrete space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| dis1stc | ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ 1stω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex 5409 | . . . . . . . 8 ⊢ {𝑥} ∈ V | |
| 2 | distop 22938 | . . . . . . . 8 ⊢ ({𝑥} ∈ V → 𝒫 {𝑥} ∈ Top) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 {𝑥} ∈ Top |
| 4 | tgtop 22916 | . . . . . . 7 ⊢ (𝒫 {𝑥} ∈ Top → (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥}) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥} |
| 6 | topbas 22915 | . . . . . . . 8 ⊢ (𝒫 {𝑥} ∈ Top → 𝒫 {𝑥} ∈ TopBases) | |
| 7 | 3, 6 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 {𝑥} ∈ TopBases |
| 8 | snfi 9062 | . . . . . . . . . 10 ⊢ {𝑥} ∈ Fin | |
| 9 | pwfi 9334 | . . . . . . . . . 10 ⊢ ({𝑥} ∈ Fin ↔ 𝒫 {𝑥} ∈ Fin) | |
| 10 | 8, 9 | mpbi 230 | . . . . . . . . 9 ⊢ 𝒫 {𝑥} ∈ Fin |
| 11 | isfinite 9671 | . . . . . . . . 9 ⊢ (𝒫 {𝑥} ∈ Fin ↔ 𝒫 {𝑥} ≺ ω) | |
| 12 | 10, 11 | mpbi 230 | . . . . . . . 8 ⊢ 𝒫 {𝑥} ≺ ω |
| 13 | sdomdom 8999 | . . . . . . . 8 ⊢ (𝒫 {𝑥} ≺ ω → 𝒫 {𝑥} ≼ ω) | |
| 14 | 12, 13 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 {𝑥} ≼ ω |
| 15 | 2ndci 23391 | . . . . . . 7 ⊢ ((𝒫 {𝑥} ∈ TopBases ∧ 𝒫 {𝑥} ≼ ω) → (topGen‘𝒫 {𝑥}) ∈ 2ndω) | |
| 16 | 7, 14, 15 | mp2an 692 | . . . . . 6 ⊢ (topGen‘𝒫 {𝑥}) ∈ 2ndω |
| 17 | 5, 16 | eqeltrri 2832 | . . . . 5 ⊢ 𝒫 {𝑥} ∈ 2ndω |
| 18 | 2ndc1stc 23394 | . . . . 5 ⊢ (𝒫 {𝑥} ∈ 2ndω → 𝒫 {𝑥} ∈ 1stω) | |
| 19 | 17, 18 | ax-mp 5 | . . . 4 ⊢ 𝒫 {𝑥} ∈ 1stω |
| 20 | 19 | rgenw 3056 | . . 3 ⊢ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 1stω |
| 21 | dislly 23440 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝒫 𝑋 ∈ Locally 1stω ↔ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 1stω)) | |
| 22 | 20, 21 | mpbiri 258 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Locally 1stω) |
| 23 | lly1stc 23439 | . 2 ⊢ Locally 1stω = 1stω | |
| 24 | 22, 23 | eleqtrdi 2845 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ 1stω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 𝒫 cpw 4580 {csn 4606 class class class wbr 5124 ‘cfv 6536 ωcom 7866 ≼ cdom 8962 ≺ csdm 8963 Fincfn 8964 topGenctg 17456 Topctop 22836 TopBasesctb 22888 1stωc1stc 23380 2ndωc2ndc 23381 Locally clly 23407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9428 df-card 9958 df-acn 9961 df-rest 17441 df-topgen 17462 df-top 22837 df-topon 22854 df-bases 22889 df-1stc 23382 df-2ndc 23383 df-lly 23409 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |