MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dis1stc Structured version   Visualization version   GIF version

Theorem dis1stc 22650
Description: A discrete space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
dis1stc (𝑋𝑉 → 𝒫 𝑋 ∈ 1stω)

Proof of Theorem dis1stc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 snex 5354 . . . . . . . 8 {𝑥} ∈ V
2 distop 22145 . . . . . . . 8 ({𝑥} ∈ V → 𝒫 {𝑥} ∈ Top)
31, 2ax-mp 5 . . . . . . 7 𝒫 {𝑥} ∈ Top
4 tgtop 22123 . . . . . . 7 (𝒫 {𝑥} ∈ Top → (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥})
53, 4ax-mp 5 . . . . . 6 (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥}
6 topbas 22122 . . . . . . . 8 (𝒫 {𝑥} ∈ Top → 𝒫 {𝑥} ∈ TopBases)
73, 6ax-mp 5 . . . . . . 7 𝒫 {𝑥} ∈ TopBases
8 snfi 8834 . . . . . . . . . 10 {𝑥} ∈ Fin
9 pwfi 8961 . . . . . . . . . 10 ({𝑥} ∈ Fin ↔ 𝒫 {𝑥} ∈ Fin)
108, 9mpbi 229 . . . . . . . . 9 𝒫 {𝑥} ∈ Fin
11 isfinite 9410 . . . . . . . . 9 (𝒫 {𝑥} ∈ Fin ↔ 𝒫 {𝑥} ≺ ω)
1210, 11mpbi 229 . . . . . . . 8 𝒫 {𝑥} ≺ ω
13 sdomdom 8768 . . . . . . . 8 (𝒫 {𝑥} ≺ ω → 𝒫 {𝑥} ≼ ω)
1412, 13ax-mp 5 . . . . . . 7 𝒫 {𝑥} ≼ ω
15 2ndci 22599 . . . . . . 7 ((𝒫 {𝑥} ∈ TopBases ∧ 𝒫 {𝑥} ≼ ω) → (topGen‘𝒫 {𝑥}) ∈ 2ndω)
167, 14, 15mp2an 689 . . . . . 6 (topGen‘𝒫 {𝑥}) ∈ 2ndω
175, 16eqeltrri 2836 . . . . 5 𝒫 {𝑥} ∈ 2ndω
18 2ndc1stc 22602 . . . . 5 (𝒫 {𝑥} ∈ 2ndω → 𝒫 {𝑥} ∈ 1stω)
1917, 18ax-mp 5 . . . 4 𝒫 {𝑥} ∈ 1stω
2019rgenw 3076 . . 3 𝑥𝑋 𝒫 {𝑥} ∈ 1stω
21 dislly 22648 . . 3 (𝑋𝑉 → (𝒫 𝑋 ∈ Locally 1stω ↔ ∀𝑥𝑋 𝒫 {𝑥} ∈ 1stω))
2220, 21mpbiri 257 . 2 (𝑋𝑉 → 𝒫 𝑋 ∈ Locally 1stω)
23 lly1stc 22647 . 2 Locally 1stω = 1stω
2422, 23eleqtrdi 2849 1 (𝑋𝑉 → 𝒫 𝑋 ∈ 1stω)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  𝒫 cpw 4533  {csn 4561   class class class wbr 5074  cfv 6433  ωcom 7712  cdom 8731  csdm 8732  Fincfn 8733  topGenctg 17148  Topctop 22042  TopBasesctb 22095  1stωc1stc 22588  2ndωc2ndc 22589  Locally clly 22615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-card 9697  df-acn 9700  df-rest 17133  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-1stc 22590  df-2ndc 22591  df-lly 22617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator