| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgtopon | Structured version Visualization version GIF version | ||
| Description: A basis generates a topology on ∪ 𝐵. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| tgtopon | ⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ (TopOn‘∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgcl 22862 | . 2 ⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top) | |
| 2 | unitg 22860 | . . 3 ⊢ (𝐵 ∈ TopBases → ∪ (topGen‘𝐵) = ∪ 𝐵) | |
| 3 | 2 | eqcomd 2736 | . 2 ⊢ (𝐵 ∈ TopBases → ∪ 𝐵 = ∪ (topGen‘𝐵)) |
| 4 | istopon 22805 | . 2 ⊢ ((topGen‘𝐵) ∈ (TopOn‘∪ 𝐵) ↔ ((topGen‘𝐵) ∈ Top ∧ ∪ 𝐵 = ∪ (topGen‘𝐵))) | |
| 5 | 1, 3, 4 | sylanbrc 583 | 1 ⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ (TopOn‘∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4879 ‘cfv 6519 topGenctg 17406 Topctop 22786 TopOnctopon 22803 TopBasesctb 22838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-iota 6472 df-fun 6521 df-fv 6527 df-topgen 17412 df-top 22787 df-topon 22804 df-bases 22839 |
| This theorem is referenced by: ordttopon 23086 tgqtop 23605 alexsublem 23937 alexsub 23938 mopntopon 24333 topjoin 36350 istoprelowl 37345 |
| Copyright terms: Public domain | W3C validator |