MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgtopon Structured version   Visualization version   GIF version

Theorem tgtopon 22474
Description: A basis generates a topology on 𝐵. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
tgtopon (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ (TopOn‘ 𝐵))

Proof of Theorem tgtopon
StepHypRef Expression
1 tgcl 22472 . 2 (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top)
2 unitg 22470 . . 3 (𝐵 ∈ TopBases → (topGen‘𝐵) = 𝐵)
32eqcomd 2739 . 2 (𝐵 ∈ TopBases → 𝐵 = (topGen‘𝐵))
4 istopon 22414 . 2 ((topGen‘𝐵) ∈ (TopOn‘ 𝐵) ↔ ((topGen‘𝐵) ∈ Top ∧ 𝐵 = (topGen‘𝐵)))
51, 3, 4sylanbrc 584 1 (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ (TopOn‘ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107   cuni 4909  cfv 6544  topGenctg 17383  Topctop 22395  TopOnctopon 22412  TopBasesctb 22448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-topgen 17389  df-top 22396  df-topon 22413  df-bases 22449
This theorem is referenced by:  ordttopon  22697  tgqtop  23216  alexsublem  23548  alexsub  23549  mopntopon  23945  topjoin  35250  istoprelowl  36241
  Copyright terms: Public domain W3C validator