![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgtopon | Structured version Visualization version GIF version |
Description: A basis generates a topology on ∪ 𝐵. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
tgtopon | ⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ (TopOn‘∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgcl 22472 | . 2 ⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top) | |
2 | unitg 22470 | . . 3 ⊢ (𝐵 ∈ TopBases → ∪ (topGen‘𝐵) = ∪ 𝐵) | |
3 | 2 | eqcomd 2739 | . 2 ⊢ (𝐵 ∈ TopBases → ∪ 𝐵 = ∪ (topGen‘𝐵)) |
4 | istopon 22414 | . 2 ⊢ ((topGen‘𝐵) ∈ (TopOn‘∪ 𝐵) ↔ ((topGen‘𝐵) ∈ Top ∧ ∪ 𝐵 = ∪ (topGen‘𝐵))) | |
5 | 1, 3, 4 | sylanbrc 584 | 1 ⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ (TopOn‘∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∪ cuni 4909 ‘cfv 6544 topGenctg 17383 Topctop 22395 TopOnctopon 22412 TopBasesctb 22448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-topgen 17389 df-top 22396 df-topon 22413 df-bases 22449 |
This theorem is referenced by: ordttopon 22697 tgqtop 23216 alexsublem 23548 alexsub 23549 mopntopon 23945 topjoin 35250 istoprelowl 36241 |
Copyright terms: Public domain | W3C validator |