![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgtopon | Structured version Visualization version GIF version |
Description: A basis generates a topology on ∪ 𝐵. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
tgtopon | ⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ (TopOn‘∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgcl 22992 | . 2 ⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top) | |
2 | unitg 22990 | . . 3 ⊢ (𝐵 ∈ TopBases → ∪ (topGen‘𝐵) = ∪ 𝐵) | |
3 | 2 | eqcomd 2741 | . 2 ⊢ (𝐵 ∈ TopBases → ∪ 𝐵 = ∪ (topGen‘𝐵)) |
4 | istopon 22934 | . 2 ⊢ ((topGen‘𝐵) ∈ (TopOn‘∪ 𝐵) ↔ ((topGen‘𝐵) ∈ Top ∧ ∪ 𝐵 = ∪ (topGen‘𝐵))) | |
5 | 1, 3, 4 | sylanbrc 583 | 1 ⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ (TopOn‘∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∪ cuni 4912 ‘cfv 6563 topGenctg 17484 Topctop 22915 TopOnctopon 22932 TopBasesctb 22968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-topgen 17490 df-top 22916 df-topon 22933 df-bases 22969 |
This theorem is referenced by: ordttopon 23217 tgqtop 23736 alexsublem 24068 alexsub 24069 mopntopon 24465 topjoin 36348 istoprelowl 37343 |
Copyright terms: Public domain | W3C validator |